Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
RSC Adv ; 9(33): 18888-18897, 2019 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-35516869

RESUMO

In this study, various interfacial interaction modes between silica and in-chain functionalized solution styrene butadiene rubbers (F-SSBRs) with -OH (3-mercaptopropanol, MPL), -COOH (11-mercaptoundecanoic acid, MUA), and -Si-(OCH2CH3)3 (3-mercaptopropyltriethoxysilane, MPTES) were constructed at the molecular level. As the modes of interfacial interaction followed the order of single hydrogen bond interactions to dual hydrogen/covalent bond interactions to single covalent bond interactions, the interfacial interactions presented silica/SSBR-g-MPL < silica/SSBR-g-MUA < silica/SSBR-g-MPTES. Moreover, the interfacial interactions were enhanced as the grafting percentages of the functional group increased. The results showed that silica dispersion was enhanced upon improving the interfacial interaction. As the filler-rubber networks improved and filler-filler networks decreased, the dynamic mechanical properties of the silica/F-SSBR composites improved and were even superior to those of the silica/SSBR/bis(γ-triethoxysilylpropyl)-tetrasulfide (Si69) composite. The rolling resistances of silica/SSBR-g-MPL, silica/SSBR-g-MUA, and silica/SSBR-g-MPTES composites decreased by 21.2%, 27.3%, and 50.8%, respectively. The wet skid resistances of silica/SSBR-g-MPL, silica/SSBR-g-MUA, and silica/SSBR-g-MPTES composites increased by 112.7%, 161.2%, and 184.3%, respectively. However, the excessively strong rubber-rubber networks led to poor mechanical properties. Filler-rubber, filler-filler, and rubber-rubber networks reached equilibrium in the silica/SSBR-g-MUA composite, which had excellent overall performances of high strength, low rolling resistance, and high wet skid resistance.

2.
Macromol Rapid Commun ; 39(20): e1800298, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-30085365

RESUMO

A simple approach to synthesize extremely high glass transition temperature (Tg > 300 °C) hydrocarbon polymers that introduces bridged cyclic backbone and bulky pendant group simultaneously is reported. This method uses highly 3,4-regulated poly(phenyl-1,3-butadiene) as a prepolymer for cationic cyclization postmodification. The Tg of cyclized highly 3,4-regulated (94.0%) poly(1-phenyl-1,3-butadiene) (P(1-PB)) can reach 304 °C. To further restrict the movement of bridged cyclic backbone by changing the position of the pendant substituent group, highly 3,4-regulated (96.2%) poly(2-phenyl-1,3-butadiene) (P(2-PB)) is used as the prepolymer. The Tg of its cyclized product reaches 325 °C, and this value is the highest ever reported among all hydrocarbon polymers. The results indicate that the regularity of poly(phenyl-1,3-butadiene) and the pendant substituent group are crucial factors when synthesizing high-temperature hydrocarbon polymers through this approach.


Assuntos
Butadienos/síntese química , Hidrocarbonetos/síntese química , Polímeros/síntese química , Butadienos/química , Cátions , Ciclização , Hidrocarbonetos/química , Polímeros/química , Temperatura de Transição
3.
Front Chem ; 6: 240, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30079334

RESUMO

Recently, sustainable development has become a significant concern globally, and the energy crisis is one of the top priorities. From the perspective of the industrial application of polymeric materials, rubber tires are critically important in our daily lives. However, the energy consumption of tires can reach 6% of the world's total energy consumption per annum. Meanwhile, it is calculated that around 5% of carbon dioxide comes from the emission of tire rolling due to energy consumption. To overcome these severe energy and environmental challenges, designing and developing a high-performance fuel-saving tire is of paramount significance. Herein, a next-generation, eco-friendly super elastomer material based on macromolecular assembly technology has been fabricated. Hydroxyl-terminated solution-polymerized styrene-butadiene rubber (HTSSBR) with high vinyl contents prepared by anionic polymerization is used as flexible soft segments to obtain excellent wet skid resistance. Furthermore, highly symmetrical 1,5-naphthalene diisocyanate (NDI), different proportions of chain extender, and the cross-linking agent with moderate molecular length are selected as rigid hard segments to achieve simultaneous high heat resistance. Through this approach, a homogeneous network supported by uniformly distributed hard segment nanoparticles is formed because soft segments with equal length are chemically end-linked by the hard segments. This super elastomer material exhibits excellent wear resistance and low rolling resistance. More importantly, the wear resistance, rolling resistance, and wet-skid resistance are reduced by 85.4, 42.3, and 20.8%, respectively, compared to the elastomeric material conventionally used for tire. By taking advantage of this excellent comprehensive service performance, the long-standing challenge of the "magic triangle" plaguing the rubber tire industry for almost 100 years is resolved. It is anticipated that this newly designed and fabricated elastomeric material tailored for tires will become the next generation product, which could exhibit high potential for significantly cutting the fuel consumption and reducing the emission of carbon dioxide.

4.
Des Monomers Polym ; 20(1): 66-73, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29491780

RESUMO

Well-controlled anionic polymerization of an initiator-functionalized monomer, p-(2,2'-diphenylethyl)styrene (DPES), was achieved for the first time. The polymerization was performed in a mixed solvent of cyclohexane and tetrahydrofuran (THF) at 40 °C with n-BuLi as initiator. When the volume ratio of cyclohexane to THF was 20, the anionic polymerization of DPES showed living polymerization characteristics, and well-defined block copolymer PDPES-b-PS was successfully synthesized. Furthermore, radical polymerization of methyl methacrylate in the presence of PDPES effectively afforded a graft copolymer composed of a polystyrene backbone and poly(methyl methacrylate) branches. The designation of analogous monomers and polymers was of great significance to synthesize a variety of sophisticated copolymer and functionalize polymer materials.

5.
Des Monomers Polym ; 20(1): 476-484, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29491819

RESUMO

In this paper, we present a tandem anionic-radical approach for synthesizing hypergrafted polymers. We prepared 4-(N,N-diphenylamino)methylstyrene (DPAMS) as a new radical-based inimer. Linear PDPAMS was prepared through anionic polymerization. Hypergrafted PDPAMS was synthesized through the self-condensing vinyl polymerization of DPAMS with linear PDPAMS. The linear backbone of PDPAMS, which incorporated latent radical initiating sites, served as a 'hyperlinker' to link hyperbranched side chains. The molecular weights of hypergrafted polymers increased as the length of the linear backbone chain increased. The hypergrafted structure of the resulting polymer was confirmed using a conventional gel permeation chromatograph apparatus equipped with a multiangle light scattering detector, nuclear magnetic resonance, differential scanning calorimetry, and thermogravimetric analysis. This strategy can be applied to synthesize other complex architectures based on hyperbranched polymers by changing the structure of a polymer backbone through anionic polymerization.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...