Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Immunother Cancer ; 10(7)2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35851308

RESUMO

BACKGROUND: Stereotactic body radiotherapy (SBRT) has been increasingly used as adjuvant therapy in pancreatic ductal adenocarcinoma (PDAC), and induces immunogenic cell death, which leads to the release of tumor antigen and damage-associated molecular patterns. However, this induction often fails to generate sufficient response to overcome pre-existing tumor microenvironment (TME) immunosuppression. Toll-like receptor (TLR) 7/8 ligands, such as R848, can amplify the effect of tumor vaccines, with recent evidence showing its antitumor effect in pancreatic cancer by modulating the immunosuppressive TME. Therefore, we hypothesized that the combination of R848 and SBRT would improve local and systemic antitumor immune responses by potentiating the antitumor effects of SBRT and reversing the immunosuppressive nature of the PDAC TME. METHODS: Using murine models of orthotopic PDAC, we assessed the combination of intravenous TLR7/8 agonist R848 and local SBRT on tumor growth and immune response in primary pancreatic tumors. Additionally, we employed a hepatic metastatic model to investigate if the combination of SBRT targeting only the primary pancreatic tumor and systemic R848 is effective in controlling established liver metastases. RESULTS: We demonstrated that intravenous administration of the TLR7/8 agonist R848, in combination with local SBRT, leads to superior tumor control compared with either treatment alone. The combination of R848 and SBRT results in significant immune activation of the pancreatic TME, including increased tumor antigen-specific CD8+ T cells, decreased regulatory T cells, and enhanced antigen-presenting cells maturation, as well as increased interferon gamma, granzyme B, and CCL5 along with decreased levels of interleukin 4 (IL-4), IL-6, and IL-10. Importantly, the combination of SBRT and systemic R848 also resulted in similar immunostimulatory changes in liver metastases, leading to improved metastatic control. CD8+ T cell depletion studies highlighted the necessity of these effector cells at both the local and hepatic metastatic sites. T cell receptor (TCR) clonotype analysis indicated that systemic R848 not only diversified the TCR repertoire but also conditioned the metastatic foci to facilitate entry of CD8+ T cells generated by SBRT therapy. CONCLUSIONS: These findings suggest that systemic administration of TLR7/8 agonists in combination with SBRT may be a promising avenue for metastatic PDAC treatment.


Assuntos
Carcinoma Ductal Pancreático , Imidazóis/farmacologia , Neoplasias Hepáticas , Neoplasias Pancreáticas , Radiocirurgia , Adjuvantes Imunológicos/farmacologia , Animais , Antígenos de Neoplasias , Linfócitos T CD8-Positivos , Carcinoma Ductal Pancreático/tratamento farmacológico , Carcinoma Ductal Pancreático/radioterapia , Modelos Animais de Doenças , Humanos , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/radioterapia , Camundongos , Neoplasias Pancreáticas/tratamento farmacológico , Neoplasias Pancreáticas/radioterapia , Receptor 7 Toll-Like/agonistas , Receptor 8 Toll-Like/agonistas , Microambiente Tumoral , Neoplasias Pancreáticas
2.
Cancers (Basel) ; 13(10)2021 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-34064795

RESUMO

Metastatic melanoma portends a poor prognosis and patients may present with multiple, simultaneous tumors. Despite recent advances in systemic immunotherapy, a majority of patients fail to respond, or exhibit lesion-specific responses wherein some metastases respond as others progress within the same patient. While intertumoral heterogeneity has been clinically associated with these mixed lesion-specific therapeutic responses, no clear mechanism has been identified, largely due to the scarcity of preclinical models. We developed a novel murine synchronous melanoma model that recapitulates this intertumoral genetic and microenvironmental heterogeneity. We show that genetic differences between tumors are sufficient to generate distinct tumor immune microenvironments (TIME) simultaneously in the same mouse. Furthermore, these TIMEs lead to the independent regulation of PD-1/PD-L1 (programmed cell death protein 1/PD-1 ligand), a popular axis targeted by immune checkpoint therapy, in response to ongoing anti-tumor immunity and the presence of interferon-gamma. Currently, therapeutic selection for metastatic melanoma patients is guided by a single biopsy, which may not represent the immune status of all tumors. As a result, patients can display heterogeneous lesion-specific responses. Further investigations into this synchronous melanoma model will provide mechanistic insight into the effects of intertumoral heterogeneity and guide therapeutic selection in this challenging patient population.

3.
Immunol Invest ; 49(7): 808-823, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32498585

RESUMO

INTRODUCTION: The tumor-draining lymph node (TDLN) plays a role in tumor immunity. Intratumorally administered microspheres (MS) that encapsulate immunomodulatory agents have emerged as a treatment strategy capable of causing profound changes in the tumor microenvironment (TME) and eliciting potent antitumor effects. We hypothesized that local delivery of MS to the TME may also drain to and therefore target the TDLN to initiate antitumor immune responses. METHODS: Fluorescent MS were injected into orthotopically implanted murine pancreatic tumors, and tissues were examined by whole-mount microscopy and imaging flow cytometry. The role of the TDLN was investigated for mice treated with intratumoral interleukin-12 (IL-12)-encapsulated MS in combination with stereotactic body radiotherapy (SBRT) by cytokine profile and TDLN ablation. RESULTS: Fluorescent AF-594 MS delivered intratumorally were detected in the tumor, peritumoral lymphatics, and the TDLN 2 h after injection. Phagocytic cells were observed with internalized fluorescent MS. SBRT + IL-12 MS-induced upregulation of Th1 and antitumor factors IL-12, IFN-γ, CXCL10, and granzyme B in the TDLN, and excision of the TDLN partially abrogated treatment efficacy. CONCLUSIONS: Our results demonstrate that intratumorally administered MS not only target the TME, but also drain to the TDLN. Furthermore, MS encapsulated with a potent antitumor cytokine, IL-12, induce an antitumor cytokine profile in the TDLN, which is essential for treatment efficacy.


Assuntos
Antineoplásicos Imunológicos/administração & dosagem , Carcinoma Ductal Pancreático/tratamento farmacológico , Carcinoma Ductal Pancreático/patologia , Linfonodos/efeitos dos fármacos , Linfonodos/patologia , Microesferas , Neoplasias Pancreáticas/tratamento farmacológico , Neoplasias Pancreáticas/patologia , Animais , Biomarcadores , Biomarcadores Tumorais , Carcinoma Ductal Pancreático/diagnóstico por imagem , Terapia Combinada , Gerenciamento Clínico , Modelos Animais de Doenças , Feminino , Humanos , Imunofenotipagem , Linfonodos/imunologia , Camundongos , Terapia de Alvo Molecular/métodos , Neoplasias Pancreáticas/diagnóstico por imagem , Neoplasias Pancreáticas/etiologia , Microambiente Tumoral/efeitos dos fármacos , Microambiente Tumoral/imunologia , Ensaios Antitumorais Modelo de Xenoenxerto
4.
Cancer Immunol Res ; 8(1): 94-107, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31719057

RESUMO

Pancreatic ductal adenocarcinoma (PDAC) continues to have a dismal prognosis, in part, due to ineffective treatment strategies. The efficacy of some chemotherapies and especially radiotherapy is mediated partially by the immune system. Therefore, we hypothesized that profiling the immune response following chemotherapy and/or irradiation can be used as a readout for treatment efficacy but also to help identify optimal therapeutic schedules for PDAC. Using murine models of PDAC, we demonstrated that concurrent administration of stereotactic body radiotherapy (SBRT) and a modified dose of FOLFIRINOX (mFX) resulted in superior tumor control when compared with single or sequential treatment groups. Importantly, this combined treatment schedule enhanced the magnitude of immunogenic cell death, which in turn amplified tumor antigen presentation by dendritic cells and intratumoral CD8+ T-cell infiltration. Concurrent therapy also resulted in systemic immunity contributing to the control of established metastases. These findings provide a rationale for pursuing concurrent treatment schedules of SBRT with mFX in PDAC.


Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Morte Celular Imunogênica , Neoplasias Pulmonares/secundário , Neoplasias Experimentais/patologia , Neoplasias Pancreáticas/patologia , Radiocirurgia/métodos , Animais , Linfócitos T CD8-Positivos/imunologia , Linhagem Celular Tumoral , Terapia Combinada , Células Dendríticas/imunologia , Feminino , Neoplasias Pulmonares/imunologia , Neoplasias Pulmonares/terapia , Camundongos , Camundongos Endogâmicos C57BL , Neoplasias Experimentais/imunologia , Neoplasias Experimentais/terapia , Neoplasias Pancreáticas/imunologia , Neoplasias Pancreáticas/terapia , Microambiente Tumoral/imunologia
5.
Cell Rep ; 29(2): 406-421.e5, 2019 10 08.
Artigo em Inglês | MEDLINE | ID: mdl-31597100

RESUMO

Over 80% of pancreatic ductal adenocarcinoma (PDA) patients are diagnosed with non-resectable late-stage disease that lacks effective neoadjuvant therapies. Stereotactic body radiation therapy (SBRT) has shown promise as an emerging neoadjuvant approach for treating PDA, and here, we report that its combination with local interleukin-12 (IL-12) microsphere (MS) immunotherapy results in marked tumor reduction and cures in multiple preclinical mouse models of PDA. Our findings demonstrate an increase of intratumoral interferon gamma (IFNγ) production following SBRT/IL-12 MS administration that initiates suppressor cell reprogramming and a subsequent increase in CD8 T cell activation. Furthermore, SBRT/IL-12 MS therapy results in the generation of systemic tumor immunity that is capable of eliminating established liver metastases, providing a rationale for follow-up studies in advanced metastatic disease.


Assuntos
Interleucina-12/uso terapêutico , Neoplasias Pancreáticas/imunologia , Neoplasias Pancreáticas/terapia , Radiocirurgia , Microambiente Tumoral/imunologia , Animais , Linfócitos T CD8-Positivos/imunologia , Linhagem Celular Tumoral , Reprogramação Celular , Humanos , Imunidade , Interferon gama/metabolismo , Ativação Linfocitária/imunologia , Camundongos Endogâmicos C57BL , Microesferas , Modelos Biológicos , Células Mieloides/patologia , Análise de Sobrevida , Carga Tumoral , Neoplasias Pancreáticas
6.
Gut ; 67(6): 1112-1123, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29196437

RESUMO

OBJECTIVE: Chemokine pathways are co-opted by pancreatic adenocarcinoma (PDAC) to facilitate myeloid cell recruitment from the bone marrow to establish an immunosuppressive tumour microenvironment (TME). Targeting tumour-associated CXCR2+neutrophils (TAN) or tumour-associated CCR2+ macrophages (TAM) alone improves antitumour immunity in preclinical models. However, a compensatory influx of an alternative myeloid subset may result in a persistent immunosuppressive TME and promote therapeutic resistance. Here, we show CCR2 and CXCR2 combined blockade reduces total tumour-infiltrating myeloids, promoting a more robust antitumour immune response in PDAC compared with either strategy alone. METHODS: Blood, bone marrow and tumours were analysed from PDAC patients and controls. Treatment response and correlative studies were performed in mice with established orthotopic PDAC tumours treated with a small molecule CCR2 inhibitor (CCR2i) and CXCR2 inhibitor (CXCR2i), alone and in combination with chemotherapy. RESULTS: A systemic increase in CXCR2+ TAN correlates with poor prognosis in PDAC, and patients receiving CCR2i showed increased tumour-infiltrating CXCR2+ TAN following treatment. In an orthotopic PDAC model, CXCR2 blockade prevented neutrophil mobilisation from the circulation and augmented chemotherapeutic efficacy. However, depletion of either CXCR2+ TAN or CCR2+ TAM resulted in a compensatory response of the alternative myeloid subset, recapitulating human disease. This was overcome by combined CCR2i and CXCR2i, which augmented antitumour immunity and improved response to FOLFIRINOX chemotherapy. CONCLUSION: Dual targeting of CCR2+ TAM and CXCR2+ TAN improves antitumour immunity and chemotherapeutic response in PDAC compared with either strategy alone.


Assuntos
Carcinoma Ductal Pancreático/imunologia , Macrófagos/efeitos dos fármacos , Neutrófilos/efeitos dos fármacos , Neoplasias Pancreáticas/imunologia , Microambiente Tumoral/imunologia , Animais , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Carcinoma Ductal Pancreático/tratamento farmacológico , Carcinoma Ductal Pancreático/metabolismo , Bases de Dados Factuais , Citometria de Fluxo , Humanos , Imuno-Histoquímica , Imunomodulação , Macrófagos/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Células Mieloides/efeitos dos fármacos , Infiltração de Neutrófilos/efeitos dos fármacos , Neutrófilos/metabolismo , Neoplasias Pancreáticas/tratamento farmacológico , Neoplasias Pancreáticas/metabolismo , Reação em Cadeia da Polimerase em Tempo Real , Receptores CCR2/antagonistas & inibidores , Receptores CCR2/metabolismo , Receptores de Interleucina-8B/antagonistas & inibidores , Receptores de Interleucina-8B/metabolismo , Análise Serial de Tecidos , Microambiente Tumoral/efeitos dos fármacos
7.
Breast Cancer Res Treat ; 161(1): 17-28, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-27785654

RESUMO

PURPOSE: The recent increase in the incidence of ductal carcinoma in situ (DCIS) has sparked debate over the classification and treatment of this disease. Although DCIS is considered a precursor lesion to invasive breast cancer, some DCIS may have more or less risk than is realized. In this study, we characterized the immune microenvironment in DCIS to determine if immune infiltrates are predictive of recurrence. METHODS: Fifty-two cases of high-grade DCIS (HG-DCIS), enriched for large lesions and a history of recurrence, were age matched with 65 cases of non-high-grade DCIS (nHG-DCIS). Immune infiltrates were characterized by single- or dual-color staining of FFPE sections for the following antigens: CD4, CD8, CD20, FoxP3, CD68, CD115, Mac387, MRC1, HLA-DR, and PCNA. Nuance multispectral imaging software was used for image acquisition. Protocols for automated image analysis were developed using CellProfiler. Immune cell populations associated with risk of recurrence were identified using classification and regression tree analysis. RESULTS: HG-DCIS had significantly higher percentages of FoxP3+ cells, CD68+ and CD68+PCNA+ macrophages, HLA-DR+ cells, CD4+ T cells, CD20+ B cells, and total tumor infiltrating lymphocytes compared to nHG-DCIS. A classification tree, generated from 16 immune cell populations and 8 clinical parameters, identified three immune cell populations associated with risk of recurrence: CD8+HLADR+ T cells, CD8+HLADR- T cells, and CD115+ cells. CONCLUSION: These findings suggest that the tumor immune microenvironment is an important factor in identifying DCIS cases with the highest risk for recurrence and that manipulating the immune microenvironment may be an efficacious strategy to alter or prevent disease progression.


Assuntos
Neoplasias da Mama/imunologia , Neoplasias da Mama/metabolismo , Carcinoma Intraductal não Infiltrante/imunologia , Carcinoma Intraductal não Infiltrante/metabolismo , Microambiente Tumoral/imunologia , Adulto , Idoso , Biomarcadores , Neoplasias da Mama/mortalidade , Neoplasias da Mama/terapia , Carcinoma Intraductal não Infiltrante/mortalidade , Carcinoma Intraductal não Infiltrante/terapia , Terapia Combinada , Feminino , Humanos , Contagem de Linfócitos , Subpopulações de Linfócitos/imunologia , Subpopulações de Linfócitos/metabolismo , Subpopulações de Linfócitos/patologia , Linfócitos do Interstício Tumoral/imunologia , Linfócitos do Interstício Tumoral/metabolismo , Linfócitos do Interstício Tumoral/patologia , Macrófagos/imunologia , Macrófagos/metabolismo , Macrófagos/patologia , Pessoa de Meia-Idade , Gradação de Tumores , Recidiva Local de Neoplasia , Estadiamento de Neoplasias , Avaliação de Resultados da Assistência ao Paciente , Prognóstico , Carga Tumoral
8.
Nano Lett ; 13(12): 6197-202, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24274657

RESUMO

Piezoelectric nanowires are an important class of smart materials for next-generation applications including energy harvesting, robotic actuation, and bioMEMS. Lead zirconate titanate (PZT), in particular, has attracted significant attention, owing to its superior electromechanical conversion performance. Yet, the ability to synthesize crystalline PZT nanowires with well-controlled properties remains a challenge. Applications of common nanosynthesis methods to PZT are hampered by issues such as slow kinetics, lack of suitable catalysts, and harsh reaction conditions. Here we report a versatile biomimetic method, in which biotemplates are used to define PZT nanostructures, allowing for rational control over composition and crystallinity. Specifically, stoichiometric PZT nanowires were synthesized using both polysaccharide (alginate) and bacteriophage templates. The wires possessed measured piezoelectric constants of up to 132 pm/V after poling, among the highest reported for PZT nanomaterials. Further, integrated devices can generate up to 0.820 µW/cm(2) of power. These results suggest that biotemplated piezoelectric nanowires are attractive candidates for stimuli-responsive nanosensors, adaptive nanoactuators, and nanoscale energy harvesters.


Assuntos
Chumbo/química , Sistemas Microeletromecânicos , Nanofios/química , Titânio/química , Zircônio/química , Bacteriófagos/química , Fontes de Energia Bioelétrica , Nanoestruturas/química , Polissacarídeos/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...