Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Plant Cell ; 2024 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-38819305

RESUMO

Potassium (K+) plays crucial roles in both plant development and immunity. However, the function of K+ in plant-virus interactions remains largely unknown. Here, we utilized Barley yellow striate mosaic virus (BYSMV), an insect-transmitted plant cytorhabdovirus, to investigate the interplay between viral infection and plant K+ homeostasis. The BYSMV accessory P9 protein exhibits viroporin activity by enhancing membrane permeability in Escherichia coli. Additionally, P9 increases K+ uptake in yeast (Saccharomyces cerevisiae) cells, which is disrupted by a point mutation of Glycine 14 to Threonine (P9G14T). Furthermore, BYSMV P9 forms oligomers and targets to both the viral envelope and the plant membrane. Based on the recombinant BYSMV-green fluorescent protein (BYGFP) virus, a P9-deleted mutant (BYGFPΔP9) was rescued and demonstrated infectivity within individual plant cells of Nicotiana benthamiana and insect vectors. However, BYGFPΔP9 failed to infect barley plants after transmission by insect vectors. Furthermore, infection of barley plants was severely impaired for BYGFP-P9G14T lacking P9 K+ channel activity. In vitro assays demonstrate that K+ facilitates virion disassembly and the release of genome RNA for viral mRNA transcription. Altogether, our results show that the K+ channel activity of viroporins is conserved in plant cytorhabdoviruses and plays crucial roles in insect-mediated virus transmission.

2.
Virology ; 593: 110013, 2024 05.
Artigo em Inglês | MEDLINE | ID: mdl-38373359

RESUMO

Tobacco streak virus induces severe diseases on a wide range of plants and becomes an emerging threat to crop yields. However, the infectious clones of TSV remain to be developed for reverse genetics studies. Here, we obtained the full genome sequence of a TSV-CNB isolate and analyzed the phylogenetic characteristics. Subsequently, we developed the full-length infectious cDNA clones of TSV-CNB driven by 35 S promoter using yeast homologous recombination. Furthermore, the host range of TSV-CNB isolate was determined by Agrobacterium infiltration and mechanical inoculation. The results reveal that TSV-CNB can infect 10 plant species in 5 families including Glycine max, Vigna radiate, Lactuca sativa var. Ramosa, Dahlia pinnate, E. purpurea, Calendula officinalis, Helianthus annuus, Nicotiana. Benthamiana, Nicotiana tabacum and Chenopodium quinoa. Taken together, the TSV infectious clones will be a useful tool for future studies on viral pathogenesis and host-virus interactions.


Assuntos
Echinacea , Ilarvirus , Humanos , DNA Complementar/genética , Ilarvirus/genética , Echinacea/genética , Filogenia , Doenças das Plantas , Nicotiana , Saccharomyces cerevisiae/genética , Células Clonais , Especificidade de Hospedeiro
3.
Plant J ; 116(6): 1717-1736, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37751381

RESUMO

Wheat yellow mosaic virus (WYMV) causes severe wheat viral disease in Asia. However, the viral suppressor of RNA silencing (VSR) encoded by WYMV has not been identified. Here, the P1 protein encoded by WYMV RNA2 was shown to suppress RNA silencing in Nicotiana benthamiana. Mutagenesis assays revealed that the alanine substitution mutant G175A of P1 abolished VSR activity and mutant Y10A VSR activity remained only in younger leaves. P1, but not G175A, interacted with gene silencing-related protein, N. benthamiana calmodulin-like protein (NbCaM), and calmodulin-binding transcription activator 3 (NbCAMTA3), and Y10A interacted with NbCAMTA3 only. Competitive Bimolecular fluorescence complementation and co-immunoprecipitation assays showed that the ability of P1 disturbing the interaction between NbCaM and NbCAMTA3 was stronger than Y10A, Y10A was stronger than G175A. In vitro transcript inoculation of infectious WYMV clones further demonstrated that VSR-defective mutants G175A and Y10A reduced WYMV infection in wheat (Triticum aestivum L.), G175A had a more significant effect on virus accumulation in upper leaves of wheat than Y10A. Moreover, RNA silencing, temperature, and autophagy have significant effects on the accumulation of P1 in N. benthamiana. Taken together, WYMV P1 acts as VSR by interfering with calmodulin-associated antiviral RNAi defense to facilitate virus infection in wheat, which has provided clear insights into the function of P1 in the process of WYMV infection.


Assuntos
Vírus do Mosaico , Viroses , Interferência de RNA , Triticum/genética , Calmodulina/genética , Viroses/genética , Vírus do Mosaico/genética , Doenças das Plantas/genética
4.
Biology (Basel) ; 12(7)2023 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-37508340

RESUMO

Viruses in the genus Polerovirus infect a wide range of crop plants and cause severe economic crop losses. BrYV belongs to the genus Polerovirus and is transmitted by Myzus persicae. However, the changes in transcriptome and proteome profiles of M. persicae during viral infection are unclear. Here, RNA-Seq and TMT-based quantitative proteomic analysis were performed to compare the differences between viruliferous and nonviruliferous aphids. In total, 1266 DEGs were identified at the level of transcription with 980 DEGs being upregulated and 286 downregulated in viruliferous aphids. At the protein level, among the 18 DEPs identified, the number of upregulated proteins in viruliferous aphids was twice that of the downregulated DEPs. Enrichment analysis indicated that these DEGs and DEPs were mainly involved in epidermal protein synthesis, phosphorylation, and various metabolic processes. Interestingly, the expressions of a number of cuticle proteins and tubulins were upregulated in viruliferous aphids. Taken together, our study revealed the complex regulatory network between BrYV and its vector M. persicae from the perspective of omics. These findings should be of great benefit to screening key factors involved in the process of virus circulation in aphids and provide new insights for BrYV prevention via vector control in the field.

5.
Biology (Basel) ; 12(2)2023 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-36829481

RESUMO

Viruses are obligate parasites that only undergo genomic replication in their host organisms. ORF3a, a newly identified non-AUG-initiated ORF encoded by members of the genus Polerovirus, is required for long-distance movement in plants. However, its interactions with host proteins still remain unclear. Here, we used Brassica yellows virus (BrYV)-P3a as bait to screen a plant split-ubiquitin-based membrane yeast two-hybrid (MYTH) cDNA library to explain the functional role of P3a in viral infections. In total, 138 genes with annotations were obtained. Bioinformatics analyses revealed that the genes from carbon fixation in photosynthetic, photosynthesis pathways, and MAPK signaling were affected. Furthermore, Arabidopsis thaliana purine permease 14 (AtPUP14), glucosinolate transporter 1 (AtGTR1), and nitrate transporter 1.7 (AtNRT1.7) were verified to interact with P3a in vivo. P3a and these three interacting proteins mainly co-localized in the cytoplasm. Expression levels of AtPUP14, AtGTR1, and AtNRT1.7 were significantly reduced in response to BrYV during the late stages of viral infection. In addition, we characterized the roles of AtPUP14, AtGTR1, and AtNRT1.7 in BrYV infection in A. thaliana using T-DNA insertion mutants, and the pup14, gtr1, and nrt1.7 mutants influenced BrYV infection to different degrees.

6.
Int J Mol Sci ; 23(4)2022 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-35216065

RESUMO

P0 proteins encoded by poleroviruses Brassica yellows virus (BrYV) and Potato leafroll virus (PLRV) are viral suppressors of RNA silencing (VSR) involved in abolishing host RNA silencing to assist viral infection. However, other roles that P0 proteins play in virus infection remain unclear. Here, we found that C-terminal truncation of P0 resulted in compromised systemic infection of BrYV and PLRV. C-terminal truncation affected systemic but not local VSR activities of P0 proteins, but neither transient nor ectopic stably expressed VSR proteins could rescue the systemic infection of BrYV and PLRV mutants. Moreover, BrYV mutant failed to establish systemic infection in DCL2/4 RNAi or RDR6 RNAi plants, indicating that systemic infection might be independent of the VSR activity of P0. Partially rescued infection of BrYV mutant by the co-infected PLRV implied the functional conservation of P0 proteins within genus. However, although C-terminal truncation mutant of BrYV P0 showed weaker interaction with its movement protein (MP) when compared to wild-type P0, wild-type and mutant PLRV P0 showed similar interaction with its MP. In sum, our findings revealed the role of P0 in virus systemic infection and the requirement of P0 carboxyl terminal region for the infection.


Assuntos
Luteoviridae/genética , Luteoviridae/patogenicidade , Proteína P0 da Mielina/genética , Proteínas Virais/genética , Brassica/virologia , Mutação/genética , Doenças das Plantas/virologia , Proteínas de Plantas/genética , Interferência de RNA/fisiologia , Nicotiana/virologia
7.
Biology (Basel) ; 10(11)2021 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-34827069

RESUMO

Brassica yellows virus (BrYV) is a tentative species of the genus Polerovirus, which has at least three genotypes (A, B, and C) in China. The P0 protein of BrYV-A (P0BrA) has been identified as a viral suppressor of RNA silencing (VSR), which can also induce cell death in infiltrated Nicotiana benthamiana leaves. In this study, we demonstrated that the cell death induced by P0BrA was accompanied by the accumulation of reactive oxygen species (ROS) and increased Pathogenesis-related protein genes-1 (PR1) expression. Meanwhile, this cell death phenotype was delayed by salicylic acid (SA) pretreatment. Biological function comparison of the three P0 proteins showed that transiently expressed P0BrB or P0BrC induced a significantly delayed and milder cell death response compared with P0BrA. However, like P0BrA, they also suppressed local and systemic RNA silencing. Six residues of P0BrA essential for inducing cell death were identified by comparative analysis and amino acid substitution assay. We also show that all three BrYV genotypes have synergistic interactions with pea enation mosaic virus 2 (PEMV 2) in N. benthamiana. This study provides theoretical guidance for controlling the viral disease caused by poleroviruses in the future.

8.
Plants (Basel) ; 10(9)2021 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-34579476

RESUMO

Brassica yellows virus (BrYV) is a tentative species of the genus Polerovirus, which occurs widely, and mostly damages Brassicaceae plants in East Asia. Because BrYV cannot be transmitted mechanically, an insect-based transmission method is required for further virus research. Here, a reliable and unrestricted method is described, in which non-viruliferous aphids (Myzus persicae) acquired BrYV from transgenic Arabidopsis thaliana, harboring the full-length viral genome germinated from seeds and its frozen leaves. The aphids then transmitted the virus to healthy plants. There was no significant difference in acquisition rates between fresh and frozen infected leaves, although the transmission rate from frozen infected leaves was lower compared to fresh infected leaves. This simple novel method may be used to preserve viral inocula, evaluate host varietal resistance to BrYV, and investigate interactions among BrYV, aphids, and hosts.

9.
Plants (Basel) ; 9(11)2020 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-33105821

RESUMO

Potato (Solanum tuberosum) is a major food source in the whole world including Bangladesh. Viral diseases are the key constraint for sustainable potato production by reducing both quality and quantity. To determine the present status of eight important potato viruses in Bangladesh, tuber samples were collected from three major potato growing regions (Munshiganj, Jessore and Bogra districts) in January-February 2017 and February 2018. Reverse transcription polymerase chain reaction (RT-PCR) with coat protein (CP)-specific primers were used to amplify CP sequences of the respective viruses, and confirmed by sequencing, which were deposited in the GenBank. Results indicated that the tuber samples were subjected to Potato leafroll virus (PLRV), Potato virus X (PVX), Potato virus Y (PVY), Potato virus S (PVS), Potato virus H (PVH), Potato aucuba mosaic virus (PAMV) and Potato virus M (PVM) infection, whereas mixed infections were very common. Phylogenetic analysis revealed that the PLRV from this study was closely related to a Canadian and a Chinese isolate, respectively; PVX was closely related to a Canadian and a Chinese isolate, respectively; PVY was closely related to a Chinese isolate; PVS was closely related to a Chinese and an Iranian isolate, respectively; PAMV was closely related to a Canadian isolate; PVH was closely related to a Huhhot isolate of China; and PVM was closely related to an Indian and an Iranian isolate, respectively. As far as we know, PAMV in this study is the first report in Bangladesh. These findings will provide a great scope for appropriate virus control strategies to virus free potato production in Bangladesh.

10.
Viruses ; 11(2)2019 02 20.
Artigo em Inglês | MEDLINE | ID: mdl-30791535

RESUMO

Higher plants exploit posttranscriptional gene silencing as a defense mechanism against virus infection by the RNA degradation system. Plant RNA viruses suppress posttranscriptional gene silencing using their encoded proteins. Three important motifs (F-box-like motif, G139/W140/G141-like motif, and C-terminal conserved region) in P0 of Potato leafroll virus (PLRV) were reported to be essential for suppression of RNA silencing activity. In this study, Agrobacterium-mediated transient experiments were carried out to screen the available amino acid substitutions in the F-box-like motif and G139/W140/G141-like motif that abolished the RNA silencing suppression activity of P0, without disturbing the P1 amino acid sequence. Subsequently, four P0 defective mutants derived from a full-length cDNA clone of PLRV (L76F and W87R substitutions in the F-box-like motif, G139RRR substitution in the G139/W140/G141-like motif, and F220R substitution in the C-terminal conserved region) were successfully generated by reverse PCR and used to investigate the impact of these substitutions on PLRV infectivity. The RT-PCR and western blot analysis revealed that these defective mutants affected virus accumulation in inoculated leaves and systemic movement in Nicotiana benthamiana as well as in its natural hosts, potato and black nightshade. These results further demonstrate that the RNA silencing suppressor of PLRV is required for PLRV accumulation and systemic infection.


Assuntos
Inativação Gênica , Luteoviridae/genética , Mutação , Nicotiana/virologia , Proteínas Virais/genética , Agrobacterium/genética , Substituição de Aminoácidos , Motivos F-Box/genética , Doenças das Plantas/virologia , Vírus de Plantas/genética , Solanum tuberosum/virologia
11.
Plant Biotechnol J ; 17(7): 1302-1315, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-30565826

RESUMO

Many plant viruses with monopartite or bipartite genomes have been developed as efficient expression vectors of foreign recombinant proteins. Nonetheless, due to lack of multiple insertion sites in these plant viruses, it is still a big challenge to simultaneously express multiple foreign proteins in single cells. The genome of Beet necrotic yellow vein virus (BNYVV) offers an attractive system for expression of multiple foreign proteins owning to a multipartite genome composed of five positive-stranded RNAs. Here, we have established a BNYVV full-length infectious cDNA clone under the control of the Cauliflower mosaic virus 35S promoter. We further developed a set of BNYVV-based vectors that permit efficient expression of four recombinant proteins, including some large proteins with lengths up to 880 amino acids in the model plant Nicotiana benthamiana and native host sugar beet plants. These vectors can be used to investigate the subcellular co-localization of multiple proteins in leaf, root and stem tissues of systemically infected plants. Moreover, the BNYVV-based vectors were used to deliver NbPDS guide RNAs for genome editing in transgenic plants expressing Cas9, which induced a photobleached phenotype in systemically infected leaves. Collectively, the BNYVV-based vectors will facilitate genomic research and expression of multiple proteins, in sugar beet and related crop plants.


Assuntos
Edição de Genes , Vetores Genéticos , Vírus de Plantas , Plantas Geneticamente Modificadas , RNA Guia de Cinetoplastídeos , Beta vulgaris/genética , Doenças das Plantas , Regiões Promotoras Genéticas , Nicotiana/genética
12.
Sci Rep ; 8(1): 16273, 2018 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-30389981

RESUMO

Poleroviruses are widely distributed and often of great economic importance because they cause a variety of symptoms, such as the rolling of young leaves, leaf color changes, and plant decline, in infected plants. However, the molecular mechanism behind these viral-induced symptoms is still unknown. Here, we verified the pathogenicity of the polerovirus Brassica yellows virus (BrYV) by transforming its full-length amplicon into Arabidopsis thaliana, which resulted in many abnormal phenotypes. To better understand the interactions between BrYV and its host, global transcriptome profiles of the transgenic plants were compared with that of non-transgenic Arabidopsis plants. An association between the BrYV- induced purple leaf symptoms and the activation of anthocyanin biosynthesis was noted. Using the transgenic approach, we found that movement protein of BrYV was responsible for the induction of these coloration symptoms. Collectively, our findings demonstrate the BrYV' pathogenicity and show that the BrYV-induced purple leaf symptom resulted from its movement protein stimulating anthocyanin accumulation.


Assuntos
Antocianinas/biossíntese , Arabidopsis/metabolismo , Luteoviridae/patogenicidade , Doenças das Plantas/virologia , Proteínas de Plantas/metabolismo , Proteínas do Movimento Viral em Plantas/metabolismo , Arabidopsis/genética , Arabidopsis/virologia , Brassica/virologia , Cor , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Genoma Viral/genética , Luteoviridae/genética , Luteoviridae/metabolismo , Filogenia , Folhas de Planta/metabolismo , Folhas de Planta/virologia , Plantas Geneticamente Modificadas/metabolismo , Plantas Geneticamente Modificadas/virologia , Regulação para Cima
13.
Front Microbiol ; 9: 613, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29670592

RESUMO

ORF3a, a newly identified non-AUG-initiated ORF encoded by members of genera Polerovirus and Luteovirus, is required for long-distance movement in plants. However, the mechanism of action of P3a in viral systemic movement is still not clear. In this study, sequencing of a brassica yellows virus (BrYV) mutant defective in systemic infection revealed two-nucleotide variation at positions 3406 and 3467 in the genome. Subsequent nucleotide substitution analysis proved that only the non-synonymous substitution (C→U) at position 3406, resulting in P3aP18L, abolished the systemic infection of BrYV. Preliminary investigation showed that wild type BrYV was able to load into the petiole of the agroinfiltrated Nicotiana benthamiana leaves, whereas the mutant displayed very low efficiency. Further experiments revealed that the P3a and its mutant P3aP18L localized to the Golgi apparatus and near plasmodesmata, as well as the endoplasmic reticulum. Both P3a and P3aP18L were able to self-interact in vivo, however, the mutant P3aP18L seemed to form more stable dimer than wild type. More interestingly, we confirmed firstly that the ectopic expression of P3a of other poleroviruses and luteoviruses, as well as co-infection with Pea enation mosaic virus 2 (PEMV 2), restored the ability of systemic movement of BrYV P3a defective mutant, indicating that the P3a is functionally conserved in poleroviruses and luteoviruses and is redundant when BrYV co-infects with PEMV 2. These observations provide a novel insight into the conserved function of P3a and its underlying mechanism in the systemic infection.

14.
J Exp Bot ; 69(12): 3127-3139, 2018 05 25.
Artigo em Inglês | MEDLINE | ID: mdl-29659986

RESUMO

In interactions between poleroviruses and their hosts, few cellular proteins have been identified that directly interact with the multifunctional virus P0 protein. To help explore the functions of P0, we identified a Brassica yellows virus genotype A (BrYV-A) P0BrA-interacting protein from Nicotiana benthamiana, Rubisco assembly factor 2 (NbRAF2), which localizes in the nucleus, cell periphery, chloroplasts, and stromules. We found that its C-terminal domain (amino acids 183-211) is required for self-interaction. A split ubiquitin membrane-bound yeast two-hybrid system and co-immunoprecipitation assays showed that NbRAF2 interacted with P0BrA, and co-localized in the nucleus and at the cell periphery. Interestingly, the nuclear pool of NbRAF2 decreased in the presence of P0BrA and during BrYV-A infection, and the P0BrA-mediated reduction of nuclear NbRAF2 required dual localization of NbRAF2 in the chloroplasts and nucleus. Tobacco rattle virus-based virus-induced gene silencing of NbRAF2 promoted BrYV-A infection in N. benthamiana, and the overexpression of nuclear NbRAF2 inhibited BrYV-A accumulation. Potato leafroll virus P0PL also interacted with NbRAF2 and decreased its nuclear accumulation, indicating that NbRAF2 may be a common target of poleroviruses. These results suggest that nuclear NbRAF2 possesses antiviral activity against BrYV-A infection, and that BrYV-A P0BrA interacts with NbRAF2 and alters its localization pattern to facilitate virus infection.


Assuntos
Antivirais/metabolismo , Luteoviridae/fisiologia , Nicotiana/virologia , Proteínas de Plantas/metabolismo , Proteínas Virais/fisiologia
15.
PLoS One ; 12(10): e0186500, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29036205

RESUMO

Plant microRNAs (miRNAs) are a class of non-coding RNAs that play important roles in plant development, defense, and symptom development. Here, 547 known miRNAs representing 129 miRNA families, and 282 potential novel miRNAs were identified in Beta macrocarpa using small RNA deep sequencing. A phylogenetic analysis was performed, and 8 Beta lineage-specific miRNAs were identified. Through a differential expression analysis, miRNAs associated with Beet necrotic yellow vein virus (BNYVV) infection were identified and confirmed using a microarray analysis and stem-loop RT-qPCR. In total, 103 known miRNAs representing 38 miRNA families, and 45 potential novel miRNAs were differentially regulated, with at least a two-fold change, in BNYVV-infected plants compared with that of the mock-inoculated control. Targets of these differentially expressed miRNAs were also predicted by degradome sequencing. These differentially expressed miRNAs were involved in hormone biosynthesis and signal transduction pathways, and enhanced axillary bud development and plant defenses. This work is the first to describe miRNAs of the plant genus Beta and may offer a reference for miRNA research in other species in the genus. It provides valuable information on the pathogenicity mechanisms of BNYVV.


Assuntos
Beta vulgaris/genética , Beta vulgaris/virologia , MicroRNAs/genética , Doenças das Plantas/virologia , Vírus de Plantas/fisiologia , Beta vulgaris/citologia , Beta vulgaris/metabolismo , Regulação da Expressão Gênica de Plantas , Sequenciamento de Nucleotídeos em Larga Escala , Filogenia , Reguladores de Crescimento de Plantas/biossíntese , Folhas de Planta/virologia , Análise de Sequência de RNA , Transdução de Sinais
16.
PLoS One ; 12(5): e0177518, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28494021

RESUMO

As a core subunit of the SCF complex that promotes protein degradation through the 26S proteasome, S-phase kinase-associated protein 1 (SKP1) plays important roles in multiple cellular processes in eukaryotes, including gibberellin (GA), jasmonate, ethylene, auxin and light responses. P7-2 encoded by Rice black streaked dwarf virus (RBSDV), a devastating viral pathogen that causes severe symptoms in infected plants, interacts with SKP1 from different plants. However, whether RBSDV P7-2 forms a SCF complex and targets host proteins is poorly understood. In this study, we conducted yeast two-hybrid assays to further explore the interactions between P7-2 and 25 type I Oryza sativa SKP1-like (OSK) proteins, and found that P7-2 interacted with eight OSK members with different binding affinity. Co-immunoprecipitation assay further confirmed the interaction of P7-2 with OSK1, OSK5 and OSK20. It was also shown that P7-2, together with OSK1 and O. sativa Cullin-1, was able to form the SCF complex. Moreover, yeast two-hybrid assays revealed that P7-2 interacted with gibberellin insensitive dwarf2 (GID2) from rice and maize plants, which is essential for regulating the GA signaling pathway. It was further demonstrated that the N-terminal region of P7-2 was necessary for the interaction with GID2. Overall, these results indicated that P7-2 functioned as a component of the SCF complex in rice, and interaction of P7-2 with GID2 implied possible roles of the GA signaling pathway during RBSDV infection.


Assuntos
Giberelinas/metabolismo , Complexos Multiproteicos/metabolismo , Oryza/metabolismo , Oryza/virologia , Proteínas de Plantas/metabolismo , Reoviridae/metabolismo , Proteínas Quinases Associadas a Fase S/metabolismo , Proteínas Virais/metabolismo , Imunoprecipitação , Folhas de Planta/metabolismo , Ligação Proteica , Reprodutibilidade dos Testes , Nicotiana/metabolismo , Técnicas do Sistema de Duplo-Híbrido , Zea mays
17.
Sci Rep ; 7: 45132, 2017 03 27.
Artigo em Inglês | MEDLINE | ID: mdl-28345652

RESUMO

Viral synergism is caused by co-infection of two unrelated viruses, leading to more severe symptoms or increased titres of one or both viruses. Synergistic infection of phloem-restricted poleroviruses and umbraviruses has destructive effects on crop plants. The mechanism underlying this synergy remains elusive. In our study, synergism was observed in co-infections of a polerovirus Brassica yellows virus (BrYV) and an umbravirus Pea enation mosaic virus 2 (PEMV 2) on Nicotiana benthamiana, which led to (1) increased titres of BrYV, (2) appearance of severe symptoms, (3) gain of mechanical transmission capacity of BrYV, (4) broader distribution of BrYV to non-vascular tissues. Besides, profiles of virus-derived small interfering RNAs (vsiRNAs) from BrYV and PEMV 2 in singly and doubly infected plants were obtained by small RNA deep sequencing. Our results showed that accumulation of BrYV vsiRNAs increased tremendously and ratio of positive to negative strand BrYV vsiRNAs differed between singly infected and co-infected plants. Positions to which the BrYV vsiRNAs mapped to the viral genome varied considerably during synergistic infection. Moreover, target genes of vsiRNAs were predicted and annotated. Our results revealed the synergistic characteristics during co-infection of BrYV and PEMV 2, and implied possible effects of synergism have on vsiRNAs.


Assuntos
Luteoviridae/genética , Vírus do Mosaico/genética , Nicotiana/virologia , RNA Interferente Pequeno/genética , RNA Viral/genética , Luteoviridae/patogenicidade , Vírus do Mosaico/patogenicidade , RNA Interferente Pequeno/metabolismo , RNA Viral/metabolismo
18.
Virus Res ; 205: 54-62, 2015 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-25997927

RESUMO

Beet necrotic yellow vein virus (BNYVV) is a serious threat to the sugar beet industry worldwide. However, little information is available regarding the genetic diversity and population structure of BNYVV in China. Here, we analyzed multiple sequences from four genomic regions (CP, RNA3, RNA4 and RNA5) of a set of Chinese isolates. Sequence analyses revealed that several isolates were mixed infections of variants with different genotypes and/or different p25 tetrad motifs. In total, 12 distinct p25 tetrads were found in the Chinese BNYVV population, of which four tetrads were newly identified. Phylogenetic analyses based on four genes (CP, RNA3-p25, RNA4-p31 and RNA5-p26) in isolates from around the world revealed the existence of two to four groups, which mostly corresponded to previously reported phylogenetic groups. Two new subgroups and a new group were identified from the Chinese isolates in p25 and p26 trees, respectively. Selection pressure analysis indicated that there was a positive selection pressure on the p25 from the Chinese isolates, but the other three proteins were under a negative selection pressure. There was frequent gene flow between geographically distant populations, which meant that BNYVV populations from different provinces were not geographically differentiated.


Assuntos
Beta vulgaris/virologia , Variação Genética , Doenças das Plantas/virologia , Vírus de Plantas/genética , Vírus de RNA/genética , Sequência de Bases , China , Genótipo , Dados de Sequência Molecular , Filogenia , Vírus de Plantas/classificação , Vírus de Plantas/isolamento & purificação , Vírus de RNA/classificação , Vírus de RNA/isolamento & purificação , Proteínas Virais/genética
19.
Virus Res ; 197: 13-6, 2015 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-25499296

RESUMO

Brassica yellows virus is a newly identified species in the genus of Polerovirus within the family Luteoviridae. Brassica yellows virus (BrYV) is prevalently distributed throughout Mainland China and South Korea, is an important virus infecting cruciferous crops. Based on six BrYV genomic sequences of isolates from oilseed rape, rutabaga, radish, and cabbage, three genotypes, BrYV-A, BrYV-B, and BrYV-C, exist, which mainly differ in the 5' terminal half of the genome. BrYV is an aphid-transmitted and phloem-limited virus. The use of infectious cDNA clones is an alternative means of infecting plants that allows reverse genetic studies to be performed. In this study, full-length cDNA clones of BrYV-A, recombinant BrYV5B3A, and BrYV-C were constructed under control of the cauliflower mosaic virus 35S promoter. An agrobacterium-mediated inoculation system of Nicotiana benthamiana was developed using these cDNA clones. Three days after infiltration with full-length BrYV cDNA clones, necrotic symptoms were observed in the inoculated leaves of N. benthamiana; however, no obvious symptoms appeared in the upper leaves. Reverse transcription-PCR (RT-PCR) and western blot detection of samples from the upper leaves showed that the maximum infection efficiency of BrYVs could reach 100%. The infectivity of the BrYV-A, BrYV-5B3A, and BrYV-C cDNA clones was further confirmed by northern hybridization. The system developed here will be useful for further studies of BrYV, such as host range, pathogenicity, viral gene functions, and plant-virus-vector interactions, and especially for discerning the differences among the three genotypes.


Assuntos
Clonagem Molecular , DNA Complementar/genética , Luteoviridae/genética , Genética Reversa/métodos , Agrobacterium/genética , Northern Blotting , Western Blotting , DNA Complementar/isolamento & purificação , Genótipo , Luteoviridae/classificação , Luteoviridae/isolamento & purificação , Folhas de Planta/virologia , República da Coreia , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Nicotiana/virologia , Transformação Genética
20.
Virol J ; 11: 118, 2014 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-24961274

RESUMO

BACKGROUND: Beet necrotic yellow vein virus (BNYVV) is the infectious agent of sugar beet rhizomania, which consists of four or five plus-sense RNAs. RNA4 of BNYVV is not essential for virus propagation in Nicotiana benthamiana but has a major effect on symptom expression. Early reports showed that RNA4-encoded P31 was associated with severe symptoms, such as curling and dwarfing, in N. benthamiana. RESULTS: We discovered that the pathogenesis-related protein 10 (PR-10) gene can be up-regulated in BNYVV-infected N. benthamiana in the presence of RNA4 and that it had a close link with symptom development. Our frame-shift, deletion and substitution analysis showed that only the entire P31 could induce PR-10 up-regulation during BNYVV infection and that all the tryptophans and six cysteines (C174, C183, C186, C190, C197 and C199) in the cysteine-rich P31 had significant effects on PR-10 expression. However, P31 could not interact directly with PR-10 in yeast. CONCLUSIONS: Our data demonstrated that only integrated P31 specifically induced PR-10 transcription, which coincided closely with the appearance of severe symptoms in BNYVV-infected N. benthamiana, although they could not interact directly with each other in yeast.


Assuntos
Interações Hospedeiro-Patógeno , Nicotiana/virologia , Doenças das Plantas/virologia , Proteínas de Plantas/biossíntese , Vírus de RNA/fisiologia , Proteínas Virais/metabolismo , Análise Mutacional de DNA , Dados de Sequência Molecular , Análise de Sequência de DNA
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...