Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Oncoimmunology ; 13(1): 2327682, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38516268

RESUMO

In this study, we aimed to comprehensively characterize the potential relationships among the frequently mutated genes, well-known homologous recombination repair (HRR) proteins, and immune proteins in glioma from a clinical perspective. A total of 126 surgical tissues from patients initially diagnosed with glioma were included. The genetic alterations were tested using the targeted next-generation sequencing technique. The expression of HRR proteins, immune proteins, and genetic alteration-related proteins were detected using immunostaining. Integrated analysis showed that ATRX is positively correlated with STING in high-grade glioma (HGG) with wild-type ATRX and IDH1. Then, a relapse predictive risk-scoring model was established using the least absolute shrinkage and selection operator regression algorithms. The scores based on the expression of ATRX and STING significantly predict the recurrence for glioma patients, which further predict the survival for specific subgroups, characterized with high expression of RAD51 and wild-type TERT. Moreover, STING is significantly higher in patients with high relapse risk. Interestingly, STING inhibitors and agonists both suppress the growth of HGG cells, regardless of their STING levels and STING pathway activity, whereas RAD51 inhibitor B02 is found to exclusively sensitize HGG cells with high expression of STING to temozolomide in vitro and in vivo. Overall, findings in the study not only reveal that ATRX is closely correlated with STING to drive the relapse of HGG, but also provide a STING-guided combined strategy to treat patients with aggressive gliomas. Translation of these findings will ultimately improve the outcomes for ATRX and IDH1 genomically stratified subgroups in HGG.


Assuntos
Neoplasias Encefálicas , Glioma , Proteínas de Membrana , Humanos , Neoplasias Encefálicas/genética , Glioma/genética , Mutação , Recidiva Local de Neoplasia/epidemiologia , Recidiva Local de Neoplasia/genética , Recidiva , Proteínas de Membrana/genética
2.
Lab Invest ; 103(12): 100263, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37839637

RESUMO

In this study, we aimed to explore immune markers predicting locoregional recurrence/distant metastasis (R/M) for patients with esophageal squamous cell carcinoma (ESCC) post-surgical intervention by using a novel high-throughput spatial tool to quantify multiple immune proteins expressed in ESCC and lymphocytes in tumor microenvironment (TME-L). First, formalin-fixed paraffin-embedded tissues from surgical patients with ESCC (n = 94) were constructed on a microarray, which was then divided into discovery (n = 36) and validation cohorts (n = 58). Using a newly developed GeoMx digital spatial profiling tool, 31 immune proteins in paired ESCC and TME-L, morphologically segmented by PANCK and CD45, respectively, from the discovery cohort were quantified, releasing 2,232 variables. Next, the correlation matrix was analyzed using the Corrplot package in R Studio, resulting in 6 closely correlated clusters. The Least Absolute Shrinkage and Selection Operator regression scoring model predictive of R/M risk with superior specificity was successfully established based on the 3 following hierarchically clustered immune proteins: ARG1 in ESCC/PANCK+, STING, and IDO1 in TME-L/CD45+. Moreover, the expression of IDO1 in TME-L, rather than in ESCC, significantly predicted the R/M risk score with an area under curve of 0.9598. In addition, its correlation with R/M status was further validated by dual immunohistochemistry staining of IDO1 and CD45 in discovery and validation cohorts. Above all, our findings not only provide a more accurate scoring approach based on quantitative immune proteins for the prediction of R/M risk, but also propose that IDO1 in TME-L potentially plays a driving role in mediating R/M in ESCC.


Assuntos
Carcinoma de Células Escamosas , Neoplasias Esofágicas , Carcinoma de Células Escamosas do Esôfago , Humanos , Biomarcadores Tumorais , Carcinoma de Células Escamosas/metabolismo , Neoplasias Esofágicas/metabolismo , Prognóstico , Microambiente Tumoral
3.
Environ Toxicol ; 38(1): 205-215, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36178722

RESUMO

Growing evidence demonstrates that the bioaccumulation of polystyrene nanoplastics (PS-NPs) in the gastrointestinal tract has negative effects on health. Until now, little information has been available regarding the potential hazards of PS-NPs to intestinal epithelial barriers. In this study, we employed cellular and animal models to investigate the adverse effects of PS-NPs on intestinal epithelium and the underlying mechanism. We found that PS-NPs affected the growth and survival of intestinal epithelial cells in a time- and concentration-dependent manner. PS-NPs accumulated in the cytoplasm, resulting in an impaired autophagic flux and inducing an autophagic response. This response was also confirmed in vivo. Our results provide new insights into the internalization of PS-NPs and the resultant autophagy response in intestinal epithelial cells.


Assuntos
Nanopartículas , Poluentes Químicos da Água , Animais , Poliestirenos/toxicidade , Microplásticos/toxicidade , Nanopartículas/toxicidade , Autofagia , Células Epiteliais
4.
iScience ; 25(11): 105284, 2022 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-36304117

RESUMO

The ribonuclease A (RNase A) family is one of the best-characterized vertebrate-specific proteins. In humans, eight catalytically active RNases (numbered 1-8) have been identified and have unique tissue distributions. Apart from the digestion of dietary RNA, a broad range of biological actions, including the regulation of intra- or extra-cellular RNA metabolism as well as antiviral, antibacterial, and antifungal activities, neurotoxicity, promotion of cell proliferation, anti-apoptosis, and immunomodulatory abilities, have been recently reported for the members of this family. Based on multiple biological roles, RNases are found to participate in the pathogenic processes of many diseases, such as infection, immune dysfunction, neurodegeneration, cancer, and cardiovascular disorders. This review summarizes the available data on the human RNase A family and illustrates the significant roles of the eight canonical RNases in health and disease, for stimulating further basic research and development of ideas on the potential solutions for disease diagnosis and treatment.

5.
ACS Appl Mater Interfaces ; 14(4): 5318-5327, 2022 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-35049292

RESUMO

Ethanol is considered to be one of the most promising fuels for fuel cells. However, ethanol fuel cells have a sluggish Faraday efficiency due to complex interactions between the electrolyte, electrode, and ethanol. Recent studies have further suggested that noncovalent interactions originated from the hydrated alkali metal cations and the adsorbed OHad at the Pt electrode surface also played an important role in the electron transfer. In this regard, the noncovalent interactions in different alkali metal hydroxide (AMH) solutions have been systematically investigated in this study, and it was observed that the noncovalent interactions could result in the occupation of the Pt electrode surface active sites and sluggish migration of ethanol molecules in the electrical double layer, significantly affecting the electro-oxidation efficiency. Further, it was concluded that the electro-oxidation efficiency in different AMH solutions followed the order of K+ > Na+ > Rb+ > Cs+ > Li+ due to the noncovalent interactions.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...