Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Appl Mater Interfaces ; 16(25): 32078-32086, 2024 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-38865735

RESUMO

The traditional recognition of extracellular matrix (ECM) at tissue sections relies on the time-consuming immunofluorescence that could not meet the demand of rapid diagnosis. Herein, we introduce a thickness-resolved electrochemiluminescence (ECL) microscopy to image thin-layer ECM at tissue sections for fast histopathological analysis. The unique surface-confined ECL mechanism enables to unveil the diversity and complexity of multiple tissue structures with varying thicknesses. Notably, the short lifetimes and the limited diffusion of electrogenerated coreactant radicals combined with their chemical reactivity result in a 2-fold increase in ECL intensity on ECM structures compared to the remaining tissue, enabling ECM visualization without specific labeling. The further quantitation of the ECM localization within tissue sections furnishes crucial insights into tumor progression and, more importantly, differentiates carcinoma and paracancerous tissues from patients in less than 30 min. Moreover, the reported electrochemistry-based microscopy is a dynamic approach allowing to investigate the transport, tortuosity, and trafficking properties through the tissues. This thickness-resolved recognition strategy not only opens new avenues for imaging complex samples but also holds promise for expediting tissue pathologic diagnosis, offering a more automated protocol with enhanced quantitative data compared to current intraoperative pathology methods.


Assuntos
Técnicas Eletroquímicas , Matriz Extracelular , Neoplasias , Humanos , Matriz Extracelular/química , Matriz Extracelular/metabolismo , Técnicas Eletroquímicas/métodos , Neoplasias/diagnóstico , Neoplasias/patologia , Neoplasias/diagnóstico por imagem , Neoplasias/metabolismo , Medições Luminescentes/métodos , Microscopia/métodos
2.
Angew Chem Int Ed Engl ; 63(29): e202407588, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-38742673

RESUMO

Electrochemiluminescence (ECL) is rapidly evolving from an analytical method into an optical microscopy. The orthogonality of the electrochemical trigger and the optical readout distinguishes it from classic microscopy and electrochemical techniques, owing to its near-zero background, remarkable sensitivity, and absence of photobleaching and phototoxicity. In this minireview, we summarize the recent advances in ECL imaging technology, emphasizing original configurations which enable the imaging of biological entities and the improvement of the analytical properties by increasing the complexity and multiplexing of bioassays. Additionally, mapping the (electro)chemical reactivity in space provides valuable information on nanomaterials and facilitates deciphering ECL mechanisms for improving their performances in diagnostics and (electro)catalysis. Finally, we highlight the recent achievements in imaging at the ultimate limits of single molecules, single photons or single chemical reactions, and the current challenges to translate the ECL imaging advances to other fields such as material science, catalysis and biology.

3.
ACS Sens ; 8(12): 4782-4791, 2023 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-37978286

RESUMO

Electrochemiluminescence (ECL) is an optical readout technique that is successfully applied for the detection of biomarkers in body fluids using microbead-based immunoassays. This technology is of utmost importance for in vitro diagnostics and thus a very active research area but is mainly focused on the quest for new dyes and coreactants, whereas the investigation of the ECL optics is extremely scarce. Herein, we report the 3D imaging of the ECL signals recorded at single microbeads decorated with the ECL labels in the sandwich immunoassay format. We show that the optical effects due to the light propagation through the bead determine mainly the spatial distribution of the recorded ECL signals. Indeed, the optical simulations based on the discrete dipole approximation compute rigorously the electromagnetic scattering of the ECL emission by the microbead and allow for reconstructing the spatial map of ECL emission. Thus, it provides a global description of the ECL chemical reactivity and the associated optics. The outcomes of this 3D imaging approach complemented by the optical modeling provide insight into the ECL optics and the unique ECL chemical mechanism operating on bead-based immunoassays. Therefore, it opens new directions for mechanistic investigations, ultrasensitive ECL bioassays, and imaging.


Assuntos
Técnicas Eletroquímicas , Medições Luminescentes , Medições Luminescentes/métodos , Técnicas Eletroquímicas/métodos , Fotometria , Corantes , Imunoensaio/métodos
5.
Anal Chem ; 95(42): 15700-15706, 2023 10 24.
Artigo em Inglês | MEDLINE | ID: mdl-37815364

RESUMO

As an electrochemical technique offering an optical readout, electrochemiluminescence (ECL) evolved recently into a powerful microscopy technique with the visualization of a wide range of microscopic entities. However, the dynamic imaging of transient ECL events did not receive intensive attention due to the limited number of electrogenerated photons. Here, the reaction kinetics of the model ECL bioassay system was revealed by dynamic imaging of single [Ru(bpy)3]2+-functionalized beads in the presence of the efficient tripropylamine coreactant. The time profile behavior of ECL emission, the variations of the ECL layer thickness, and the position of maximum ECL intensity over time were investigated, which were not achieved by static imaging in previous studies. Moreover, the dynamics of the ECL emission were confronted with the simulation. The reported dynamic ECL imaging allows the investigation of the ECL kinetics and mechanisms operating in bioassays and cell microscopy.


Assuntos
Luminescência , Fotometria , Medições Luminescentes , Microscopia , Técnicas Eletroquímicas/métodos
6.
Analyst ; 148(11): 2511-2517, 2023 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-37191134

RESUMO

Histopathological molecular testing of tissue sections is an essential step in tumor diagnosis; however, the commonly used immunohistochemical methods have problems such as low specificity and the subjective bias of the observer. Here, we report an electrochemiluminescence (ECL) imaging method to detect a membrane carcinoembryonic antigen (CEA) at the single tissue sections of cancer patients. By permeabilizing the tissue attached to a glassy carbon electrode, Ru(bpy)32+ tagged at the membrane CEA of the tissue could electrochemically react with TPrA in solution to emit ECL that has near-zero background and an extremely high signal-to-background ratio. Using the established ECL method, the expression differences and distribution characteristics of the CEA protein in the carcinoma and paracancerous tissues of pancreatic ductal carcinoma (PDAC) and lung adenocarcinoma (LUAD) patients are investigated. The images reveal that CEA proteins are mostly distributed in the acini and surrounding areas both in PDAC and LUAD tissues. Therefore, the presented approach could be able to provide a new molecular recognition method for the diagnosis of adenocarcinoma and other tumors.


Assuntos
Técnicas Eletroquímicas , Medições Luminescentes , Humanos , Técnicas Eletroquímicas/métodos , Medições Luminescentes/métodos , Antígeno Carcinoembrionário/análise , Antígeno Carcinoembrionário/metabolismo , Adenocarcinoma/química , Adenocarcinoma/metabolismo , Neoplasias Pancreáticas/química , Neoplasias Pancreáticas/metabolismo , Membrana Celular/química , Membrana Celular/metabolismo
7.
Nat Commun ; 14(1): 1369, 2023 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-36914668

RESUMO

Human activities affect the Earth System with an unprecedented magnitude, causing undesirable irreversible degradation. The United Nation's Sustainable Development Goals (SDGs) provide an integrated global action plan for sustainable development. However, it remains a great challenge to develop actionable strategies to achieve regional sustainability within social-environmental constraints. Here we proposed a framework, integrating safe and just operating space (SJOS) with SDGs, to assess regional sustainability and interactions between environmental performance and human well-being across scales. Despite China has not fully achieved sustainable development from 2000 to 2018, most provinces have shown significant improvements. Our analyses further delineated four development patterns (i.e., coupled and developed, coupled and underdeveloped, uncoupled and underdeveloped, and coupled and underdeveloped), and developed targeted strategies and pathways for each pattern to transition towards sustainability. Our operationalizable framework is broadly applicable to other regions or nations to actualize sustainable development.

8.
J Hematol Oncol ; 15(1): 112, 2022 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-35978332

RESUMO

BACKGROUND: Although a substantial increase in the survival of patients with other cancers has been observed in recent decades, pancreatic ductal adenocarcinoma (PDAC) remains one of the deadliest diseases. No effective screening approach exists. METHODS: Differential exosomal long noncoding RNAs (lncRNAs) isolated from the serum of patients with PDAC and healthy individuals were profiled to screen for potential markers in liquid biopsies. The functions of LINC00623 in PDAC cell proliferation, migration and invasion were confirmed through in vivo and in vitro assays. RNA pulldown, RNA immunoprecipitation (RIP) and coimmunoprecipitation (Co-IP) assays and rescue experiments were performed to explore the molecular mechanisms of the LINC00623/NAT10 signaling axis in PDAC progression. RESULTS: A novel lncRNA, LINC00623, was identified, and its diagnostic value was confirmed, as it could discriminate patients with PDAC from patients with benign pancreatic neoplasms and healthy individuals. Moreover, LINC00623 was shown to promote the tumorigenicity and migratory capacity of PDAC cells in vitro and in vivo. Mechanistically, LINC00623 bound to N-acetyltransferase 10 (NAT10) and blocked its ubiquitination-dependent degradation by recruiting the deubiquitinase USP39. As a key regulator of N4-acetylcytidine (ac4C) modification of mRNA, NAT10 was demonstrated to maintain the stability of oncogenic mRNAs and promote their translation efficiency through ac4C modification. CONCLUSIONS: Our data revealed the role of LINC00623/NAT10 signaling axis in PDAC progression, showing that it is a potential biomarker and therapeutic target for PDAC.


Assuntos
Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , RNA Longo não Codificante , Acetiltransferases/genética , Acetiltransferases/metabolismo , Carcinoma Ductal Pancreático/patologia , Linhagem Celular Tumoral , Movimento Celular/genética , Proliferação de Células/genética , Citidina/análogos & derivados , Regulação Neoplásica da Expressão Gênica , Humanos , Acetiltransferases N-Terminal/genética , Acetiltransferases N-Terminal/metabolismo , Invasividade Neoplásica/patologia , Neoplasias Pancreáticas/patologia , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , RNA Mensageiro , Proteases Específicas de Ubiquitina , Neoplasias Pancreáticas
9.
Biosens Bioelectron ; 216: 114640, 2022 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-36030741

RESUMO

Bead-based assays are successfully combined with electrochemiluminescence (ECL) technology for detection of a wide range of biomarkers. Herein, we demonstrate a novel approach to enhance the ECL signal by decorating micrometric beads with [Ru(bpy)3]2+-grafted microgels (diameter ∼100 nm). Rapid and stable light emission was spatially resolved at the level of single functionalized beads. An enhancement of the ECL signal of microgel-labeled beads by 9-fold was observed in comparison to molecularly linked [Ru(bpy)3]2+ beads prepared by a sandwich immunoassay or an amide bond. Imaging the ECL signal at the single bead level shows that the size of the ECL-emitting layer is extended using the microgels. The reported method offers a great promise for the optimization of bead-based ECL detection and subsequent development of ECL microscopy.


Assuntos
Técnicas Biossensoriais , Microgéis , Amidas , Técnicas Biossensoriais/métodos , Técnicas Eletroquímicas/métodos , Medições Luminescentes/métodos
10.
ACS Omega ; 6(29): 18939-18947, 2021 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-34337233

RESUMO

High-efficiency photoluminescence quaternary hexagon Zn-Cu-In-S (ZCIS) nanoplatelets (NPls) have been synthesized by a two-step cation exchange method, which starts with the In2S3 NPls followed by the addition of Cu and Zn. It is the first time that In2S3 NPls are used as templates to synthesize ZCIS NPls. In this paper, the reaction temperature of In2S3 is essential for the formation of NPls. The photoluminescence wavelength of NPls can be tuned by adjusting the temperature of Cu addition. To enhance the stability of the resulting NPls and to improve their optical properties, we introduced Zn2+ and obtained ZCIS NPls by cation exchange on the surface. It is worth noting that the obtained ZCIS NPls show a shorter fluorescence lifetime than other ternary copper sulfide-based NPls. This work provides a new way to synthesize high-efficiency, nontoxic, and no byproduct ZCIS NPls.

11.
Angew Chem Int Ed Engl ; 60(14): 7686-7690, 2021 03 29.
Artigo em Inglês | MEDLINE | ID: mdl-33410245

RESUMO

The effects of photobleaching on electrochemiluminescence (ECL) was investigated for the first time. The plasma membrane of Chinese Hamster Ovary (CHO) cells was labeled with a [Ru(bpy)3 ]2+ derivative. Selected regions of the fixed cells were photobleached using the confocal mode with sequential stepwise illumination or cumulatively and they were imaged by both ECL and photoluminescence (PL). ECL was generated with a model sacrificial coreactant, tri-n-propylamine. ECL microscopy of the photobleached regions shows lower ECL emission. We demonstrate a linear correlation between the ECL decrease and the PL loss due to the photobleaching of the labels immobilized on the CHO membranes. The presented strategy provides valuable information on the fundamentals of the ECL excited state and opens new opportunities for exploring cellular membranes by combining ECL microscopy with photobleaching techniques such as fluorescence recovery after photobleaching (FRAP) or fluorescence loss in photobleaching (FLIP) methods.


Assuntos
Membrana Celular/química , Corantes Fluorescentes/química , Compostos Organometálicos/química , Animais , Técnicas Biossensoriais , Células CHO , Membrana Celular/ultraestrutura , Cricetulus , Técnicas Eletroquímicas , Medições Luminescentes , Microscopia Confocal , Fotodegradação , Propilaminas/química
12.
Anal Chem ; 93(3): 1652-1657, 2021 01 26.
Artigo em Inglês | MEDLINE | ID: mdl-33375779

RESUMO

Electrochemiluminescence (ECL) microscopy is successfully applied to image cells, micro-/nano-objects, and electrochemical processes at electrode surfaces. The classic ECL tandem system is composed of the [Ru(bpy)3]2+ luminophore with the very efficient tripropylamine (TPA) coreactant. The dramatic decrease of the ECL signal observed when recording successive ECL images constitutes a key limitation for the development of ECL microscopy. Herein, we investigated the progressive decrease of the ECL signal of Chinese hamster ovary (CHO) cells. The plasma membranes of CHO cells were labeled with a [Ru(bpy)3]2+ derivative, and the ECL images were recorded using the TPA coreactant. We demonstrate that the loss of the ECL signal is related to the electrochemical step because of a progressive lower TPA oxidation current. We tested a cathodic regenerative treatment of the electrode surface, which allowed us to restore the initial TPA oxidation intensity and thus to record a sequence of ECL images without any vanishing of the light signal. The electrochemical approach presented here is an essential step for the development of ECL microscopy of cells.


Assuntos
Técnicas Biossensoriais , Técnicas Eletroquímicas , Medições Luminescentes , Animais , Células CHO , Células Cultivadas , Cricetulus , Propriedades de Superfície
13.
Biosens Bioelectron ; 165: 112372, 2020 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-32729504

RESUMO

Electrochemiluminescence (ECL) is a powerful (bio)analytical method based on an optical readout. It is successfully applied in the heterogeneous format for immunoassays and imaging using the model and most widely used ECL system, which consists of the immobilized [Ru(bpy)3]2+ label with tripropylamine (TPA) as a coreactant. However, a major drawback is the significant decrease of the ECL intensity over time. Herein, to decipher the process responsible for this progressive loss of ECL signal, we investigated its electrochemical and photophysical properties by mapping the luminescence reactivity at the level of single micrometric beads. Polystyrene beads were functionalized by the [Ru(bpy)3]2+ dye via a sandwich immunoassay or a peptide bond. ECL emission was generated in presence of the very efficient TPA coreactant. Imaging both photoluminescence and ECL reactivities of different regions (located near or far from the electrode surface) of a [Ru(bpy)3]2+-decorated bead allows us to demonstrate the remarkable photophysical stability of the ECL label, even in presence of the very reactive electrogenerated TPA radicals. We show that the ECL vanishing correlates directly with the lower TPA oxidation current. Finally, we propose a simple electrochemical treatment, which allows to regenerate the electrode surface and thus to recover several times the strong initial ECL signal. The reactivity imaging approach provides insights into the ECL mechanism and the main factors governing the stability of the emission, which should find promising ECL applications in bioassays and microscopy.


Assuntos
Técnicas Biossensoriais , Luminescência , Bioensaio , Eletrodos , Medições Luminescentes
14.
Chem Sci ; 11(38): 10496-10500, 2020 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-34123186

RESUMO

Electrochemiluminescence (ECL) microscopy is an emerging technique with a wide range of imaging applications and unique properties in terms of high spatial resolution, surface confinement and favourable signal-to-noise ratio. Despite its successful analytical applications, tuning the depth of field (i.e., thickness of the ECL-emitting layer) is a crucial issue. Indeed, the control of the thickness of this ECL region, which can be considered as an "evanescent" reaction layer, limits the development of cell microscopy as well as bioassays. Here we report an original strategy based on chemical lens effects to tune the ECL-emitting layer in the model [Ru(bpy)3]2+/tri-n-propylamine (TPrA) system. It consists of microbeads decorated with [Ru(bpy)3]2+ labels, classically used in bioassays, and TPrA as the sacrificial coreactant. In particular we exploit the buffer capacity of the solution to modify the rate of the reactions involved in the ECL generation. For the first time, a precise control of the ECL light distribution is demonstrated by mapping the luminescence reactivity at the level of single micrometric bead. The resulting ECL image is the luminescent signature of the concentration profiles of diffusing TPrA radicals, which define the ECL layer. Therefore, our findings provide insights into the ECL mechanism and open new avenues for ECL microscopy and bioassays. Indeed, the reported approach based on a chemical lens controls the spatial extension of the "evanescent" ECL-emitting layer and is conceptually similar to evanescent wave microscopy. Thus, it should allow the exploration and imaging of different heights in substrates or in cells.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...