Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Colloids Surf B Biointerfaces ; 242: 114093, 2024 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-39029248

RESUMO

In recent years, the increasingly severe pollution of heavy metals has posed a significant threat to the environment and human safety. Heavy metal ions are highly non-biodegradable, with a tendency to accumulate through biomagnification. Consequently, accurate detection of heavy metal ions is of paramount importance. As a new type of synthetic nanomaterials, single-atom nanozymes (SANs) boast exceptional enzyme-like properties, setting them apart from natural enzymes. This unique feature affords SANs with a multitude of advantages such as dispersed active sites, low cost and variety of synthetic methods over natural enzymes, making them an enticing prospect for various applications in industrial, medical and biological fields. In this paper, we systematically summarize the synthetic methods and catalytic mechanisms of SANs. We also briefly review the analytical methods for heavy metal ions and present an overall overview of the research progress in recent years on the application of SANs in the detection of environmental heavy metal ions. Eventually, we propose the existing challenges and provide a vision for the future.

2.
Biosensors (Basel) ; 14(1)2024 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-38248417

RESUMO

Due to the limitation that natural peroxidase enzymes can only function in relatively mild environments, nanozymes have expanded the application of enzymology in the biological field by dint of their ability to maintain catalytic oxidative activity in relatively harsh environments. At the same time, the development of new and highly efficient composite nanozymes has been a challenge due to the limitations of monometallic particles in applications and the inherently poor enzyme-mimetic activity of composite nanozymes. The inherent enzyme-mimicking activity is due to Au, Ag, and Pt, along with other transition metals. Moreover, the nanomaterials exhibit excellent enzyme-mimicking activity when composited with other materials. Therefore, this paper focuses on composite nanozymes with simulated peroxidase activity that have been prepared using noble metals such as Au, Ag, and Pt and other transition metal nanoparticles in recent years. Their simulated enzymatic activity is utilized for biomedical applications such as glucose detection, cancer cell detection and tumor treatment, and antibacterial applications.


Assuntos
Nanopartículas Metálicas , Nanoestruturas , Elementos de Transição , Antibacterianos , Peroxidase , Peroxidases
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...