Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Zhongguo Zhong Yao Za Zhi ; 49(6): 1485-1493, 2024 Mar.
Artigo em Chinês | MEDLINE | ID: mdl-38621932

RESUMO

Chuanxiong Rhizoma is a well-known Sichuan-specific herbal medicine. Its original plant, Ligusticum chuanxiong, has been cultivated asexually for a long time. L. chuanxiong has sexual reproductive disorders, which restricts its germplasm innovation. However, there is little research on the reproductive system of L. chuanxiong. This study is based on a comparative anatomical research approach, using morphological dissection, paraffin sectioning, staining and compression, and combined with scanning electron microscopy technology, to observe and compare the flowers, fruits, and seeds at various stages of reproductive growth of L. chuanxiong and its wild relative L. sinense. The results showed that the meiosis of pollen mother cells is abnormal in L. chuanxiong anthers, and the size and number of microspores are uneven and inconsistent in the tetrad stage. tapetum cells are not completely degenerated during anther development. During the pollen ripening stage, there are fine cracks in the anther wall, while most anthers could not release pollen normally. The surface of mature pollen grains is concave and partially deformed, and the pollens are all inactive and cannot germinate in vitro. The starch, polysaccharides, and lipids in the pollen were insufficient. The filaments of L. chuanxiong are short at the flowering stage and recurved downward. Double-hanging fruits were observed in the fruiting stage, being wrinkled; with shriveled seeds. Compared with L. sinense at the same stage, the anthers of L. sinense developed normally, and the pollen grains are vigorous and can germinate in vitro. The double-hanging fruits of L. sinense are full and normal; at the flowering period, the filaments are long and erect, significantly higher than the stigma. Mature blastocysts are visible in the ovary of both L. chuanxiong and L. sinense, and there is no significant difference in stigmas. The conclusion is that during the development of L. chuanxiong stamens, the meiosis of pollen mother cells is abnormal, and tetrad, tapetum, filament and other pollen structures develop abnormally. L. chuanxiong has the characteristic of male infertility, which is an important reason for its sexual reproductive disorders.


Assuntos
Ligusticum , Reprodução , Pólen , Flores , Polissacarídeos
2.
PeerJ ; 12: e16959, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38406278

RESUMO

Background: Endophytic fungi can enhance the growth and synthesis of secondary metabolites in medicinal plants. Salvia miltiorrhiza Bunge is frequently employed for treating cardiovascular and cerebrovascular ailments, with the primary bioactive components being salvianolic acid and tanshinone. However, their levels in cultivated S. miltiorrhiza are inferior to that of the wild herbs, so the production of high-quality medicinal herbs is sharply declining. Consequently, the utilization of beneficial endophytic fungi to improve the yield and quality of S. miltiorrhiza holds great significance for the cultivation of medicinal plants. Methods: In this study, nine non-pathogenic, endophytic fungal strains were introduced into sterile S. miltiorrhiza seedlings and cultivated both in vitro and in situ (the greenhouse). The effects of these strains on the growth indices, C and N metabolism, antioxidant activity, photosynthesis, and content of bioactive ingredients in S. miltiorrhiza were then evaluated. Results: The results showed that the different genera, species, or strains of endophytic fungi regulated the growth and metabolism of S. miltiorrhiza in unique ways. These endophytic fungi primarily exerted their growth-promoting effects by increasing the net photosynthetic rate, intercellular CO2 concentration, and the activities of sucrose synthase, sucrose phosphate synthase, nitrate reductase, and glutamine synthetase. They also enhanced the adaptability and resistance to environmental stresses by improving the synthesis of osmoregulatory compounds and the activity of antioxidant enzymes. However, their regulatory effects on the growth and development of S. miltiorrhiza were affected by environmental changes. Moreover, the strains that significantly promoted the synthesis and accumulation of phenolic acids inhibited the accumulation of tanshinones components, and vice versa. The endophytic fungal strains Penicillium meloforme DS8, Berkeleyomyces basicola DS10, and Acremonium sclerotigenum DS12 enhanced the bioaccumulation of tanshinones. Fusarium solani DS16 elevated the rosmarinic acid content and yields in S. miltiorrhiza. The strain Penicillium javanicum DS5 improved the contents of dihydrotanshinone, salvianolic acid B, and rosmarinic acid. The strains P. meloforme DS8 and B. basicola DS10 improved resistance. Conclusion: Various endophytic fungi affected the quality and yield of S. miltiorrhiza by regulating different physiological and metabolic pathways. This study also provides a novel and effective method to maximize the effects of beneficial endophytic fungi by selecting specific strains to design microbial communities based on the different ecological functions of endophytic fungi under varying environments and for specific production goals.


Assuntos
Salvia miltiorrhiza , Antioxidantes/metabolismo , Ácido Rosmarínico
3.
Int J Biol Macromol ; 263(Pt 2): 129803, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38296147

RESUMO

Acid polysaccharide was extracted from Salvia przewalskii root powders (PSP), purified by diethylaminoethyl cellulose column (DEAE-52) and molecular sieve (PSP2). PSPm1 was obtained by modifying PSP2 with nitrite and phosphoric acid. The chemical structure of PSP2 and PSPm1 exhibited notable distinctions, primarily due to the absence of arabinose and promotion of glucuronic acid (GlcA). The structure of PSPm1 was deduced through the utilization of 1H, 13C, and 2-D NMR. The main chain was linked by α-D-Galp(1 â†’ 3)-α-Glcp-(1 â†’ fragments and →6)-ß-D-Galp fragments, with the presence of →4)-α-D-GlcpA-(1 â†’ 6)-ß-D-Galp-(1 â†’ ï¼Œ â†’ 4)-α-D-GalAp-(1 â†’ 2,4)-α-D-Rhap-(1 â†’ fragments and →6)-α-Glcp-(1 â†’ 2,4)-ß-D-Manp-(1 â†’ fragments. PSPm1 exhibited different immunoregulatory bioactivity in vitro, including haemostatic effects indicated by activated clotting time of 55.5 % reduction by the activated clotting time (ACT) test and wound healing function in vivo. PSPm1 also displayed better anti-tumor biological effects than unmodified. The structure-activity dissimilarity between PSP2 and PSPm1 primarily stems from variations in molecular weight (Mw), monosaccharide composition, and branching patterns. The modification of polysaccharides from the extract residues of Chinese medicinal materials may be a new form of drug supplements.


Assuntos
Monossacarídeos , Polissacarídeos , Polissacarídeos/farmacologia , Polissacarídeos/química , Monossacarídeos/química , Espectroscopia de Ressonância Magnética , Peso Molecular
4.
Int J Biol Macromol ; 257(Pt 1): 128588, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38048922

RESUMO

This study focuses on the characterization and regulation of glycolipid metabolism of polysaccharides derived from biomass of Phyllostachys nigra (Lodd. ex Lindl.) root (PNr). The extracts from dilute hydrochloric acid, hot water, and 2 % sodium hydroxide solution were characterized through molecular weight, gel permeation chromatography, monosaccharides, Fourier transform infrared, and nuclear magnetic resonance spectroscopy analyses. Polysaccharide from alkali extraction and molecular sieve purification (named as: PNS2A) exhibited optimal inhibitory of 3T3-L1 cellular differentiation and lowered insulin resistance. The PNS2A is made of a hemicellulose-like main chain of →4)-ß-D-Xylp-(1→ that was connected by branches of 4-O-Me-α-GlcAp-(1→, T-α-D-Galp-(1→, T-α-L-Araf-(1→, →2)-α-L-Araf-(1→, as well as ß-D-Glcp-(1→4-ß-D-Glcp-(1→ fragments. Oral delivery of PNS2A in diabetes mice brought down blood glucose and cholesterol levels and regulated glucose and lipid metabolism. PNS2A alleviated diabetes symptoms and body weight and protected liver and kidney function in model animals by altering the gut microbiome. Polysaccharides can be a new approach to develop bamboo resources.


Assuntos
Diabetes Mellitus , Microbioma Gastrointestinal , Camundongos , Animais , Polissacarídeos/química , Monossacarídeos/análise , Glucose/análise , Poaceae
5.
Front Plant Sci ; 14: 1263981, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37810396

RESUMO

Introduction: Ligusticum chuanxiong Hort. is a widely used medicinal plant, but its growth and quality can be negatively affected by contamination with the heavy metal cadmium (Cd). Despite the importance of understanding how L. chuanxiong responds to Cd stress, but little is currently known about the underlying mechanisms. Methods: To address this gap, we conducted physiological and transcriptomic analyses on L. chuanxiong plants treated with different concentrations of Cd2+ (0 mg·L-1, 5 mg·L-1, 10 mg·L-1, 20 mg·L-1, and 40 mg·L-1). Results: Our findings revealed that Cd stress inhibited biomass accumulation and root development while activating the antioxidant system in L. chuanxiong. Root tissues were the primary accumulation site for Cd in this plant species, with Cd being predominantly distributed in the soluble fraction and cell wall. Transcriptomic analysis demonstrated the downregulation of differential genes involved in photosynthetic pathways under Cd stress. Conversely, the plant hormone signaling pathway and the antioxidant system exhibited positive responses to Cd regulation. Additionally, the expression of differential genes related to cell wall modification was upregulated, indicating potential enhancements in the root cell wall's ability to sequester Cd. Several differential genes associated with metal transport proteins were also affected by Cd stress, with ATPases, MSR2, and HAM3 playing significant roles in Cd passage from the apoplast to the cell membrane. Furthermore, ABC transport proteins were found to be key players in the intravesicular compartmentalization and efflux of Cd. Discussion: In conclusion, our study provides preliminary insights into the mechanisms underlying Cd accumulation and tolerance in L. chuanxiong, leveraging both physiological and transcriptomic approaches. The decrease in photosynthetic capacity and the regulation of plant hormone levels appear to be major factors contributing to growth inhibition in response to Cd stress. Moreover, the upregulation of differential genes involved in cell wall modification suggests a potential mechanism for enhancing root cell wall capabilities in isolating and sequestering Cd. The involvement of specific metal transport proteins further highlights their importance in Cd movement within the plant.

6.
PeerJ ; 11: e15579, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37520247

RESUMO

Background: Long-term asexual reproduction can easily lead to the degradation of plant germplasm, serious diseases and insect pests, reduction of production and even catastrophic crop failure. "Mountain Breeding and Dam Cultivation" is the main cultivation mode of Ligusticum chuanxiong Hort., which successfully avoided the germplasm degradation caused by long-term asexual reproduction. The recombination of endophytic fungi of L. chuanxiong caused by off-site transplantation was considered to be an important reason for its germplasm rejuvenation. However, whether bacteria have the same regularity is not yet known. Methods: In this study, we carried out the experiment of cultivating propagation materials of L. chuanxiong in different regions and transplanting them to the same region. High-throughput sequencing was performed to analyze the bacterial communities in L. chuanxiong and its soil. Results: The results showed that after transplanting, the plant height, tiller number, fresh weight, etc. of L. chuanxiong in mountainous areas were significantly higher than those in dam areas. At the same time, significant changes had taken place in the endophytic bacteria in reproductive material stem nodes (Lingzi, abbreviated as LZ). The diversity and abundance of bacteria in dam area LZ (YL) are significantly higher than those in mountainous area LZ (ML). The relative abundance of bacteria such as Xanthobacteraceae, Micromonosporaceae, Beijerinkiaceae, Rhodanobacteria, in ML is significantly higher than YL, mainly classified in Proteobateria and Actinobacteriota. In addition, the abundance advantage of Actinobacteriota still exists in MY (underground mature rhizomes obtained by ML). Meanwhile, the bacterial community was different in different area of transplanting. The diversity of bacterial communities in dam soil (YLS) is significantly higher than that in mountain soil (MLS). MLS had more Acidobacteriota than YLS. Comparative analysis showed that 74.38% of bacteria in ML are found in MLS, and 87.91% of bacteria in YL are found in YLS. Conclusions: We can conclude that the community structure of endophytic bacteria recombined after the transplantation of L. chuanxiong, which was related to the bacterial community in soils. Moreover, after transplanting in mountainous areas, LZ accumulated more potentially beneficial Actinobacteriota, which may be an important reason for promoting the rejuvenation of germplasm in L. chuanxiong. However, this hypothesis requires more specific experiments to verify. This study provided a new idea that off-site transplanting may be a new strategy to restore vegetative plant germplasm resources.

7.
Front Pharmacol ; 13: 920855, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36105218

RESUMO

Cutaneous-wound healing requires a coordinated reaction of multiple cells, including interstitial cells. Impaired recovery of cutaneous wounds can lead to various adverse health outcomes. Kangfuxin (KFX), an extract obtained from Periplaneta americana, is beneficial in cutaneous-wound healing. In this study, we isolated dermal cells from suckling mice and established a mouse model of cutaneous injury to evaluate the therapeutic effects of KFX. Cell biology experiments indicated that treatment with KFX improved cell proliferation and migration and also repaired cutaneous wounds in the animal model. Activation of the signal transducer and activator of transcription 3 (STAT3) signaling pathway was the core molecular mechanism of KFX. Our study provides a theoretical and practical basis for the clinical application of KFX in cutaneous-wound healing.

8.
Front Plant Sci ; 13: 1092610, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36704174

RESUMO

Background: Nitrogen(N), phosphorus(P), and potassium(K) are essential elements that are highly deficient during plant growth. Existing diagnostic methods are not suitable for rapid diagnosis of large-scale planting areas. Near-ground remote sensing technology based on unmanned aerial vehicle (UAV) and sensor is often applied to crop growth condition monitoring and agricultural management. It has been proven to be used for monitoring plant N, P, and K content. However, its integrated diagnostic model has been less studied. Methods: In this study, we collected UAV multispectral images of Ligusticum chuanxiong Hort. in different periods of nutritional stress and constructed recognition models with different heights and algorithms. The optimal model variables were selected, and the effects of different sampling heights and modeling algorithms on the model efficiency under the time span were evaluated. At the same time, we evaluated the timeliness of the model based on leaf element content determination and SPAD. It was also validated in field crop production. Results: The results showed that the LR algorithm's model had optimal performance at all periods and flight altitudes. The optimal accuracy of N-deficient plants identification reached 100%, P/K-deficient plants reached 92.4%, and normal plants reached 91.7%. The results of UAV multispectral diagnosis, chemical diagnosis, and SPAD value diagnosis were consistent in the diagnosis of N deficiency, and the diagnosis of P and K deficiency was slightly lagging behind that of chemical diagnosis. Conclusions: This research uses UAV remote sensing technology to establish an efficient, fast, and timely nutritional diagnosis method for L. Chuanxiong, which is applied in production. Meanwhile, the standardized production of medicinal plant resources provides new solutions.

9.
Front Plant Sci ; 12: 740456, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34858448

RESUMO

"Breeding on mountains, cultivation in dam areas" is a unique propagation method for the vegetatively propagated plant Ligusticum chuanxiong, including two transplants between the mountain and the dam area. It is well known that the environment can influence the endophytic community structure of plants. However, the change of host endophytic flora caused by transplanting in different places and its influence on asexual reproduction are still poorly understood. We carried out three cycles of cultivation experiments on L. chuanxiong and collected stem nodes (LZ), immature rhizomes (PX), medicinal rhizomes (CX), and rhizosphere. High-throughput sequencing was performed to analyze the endophytic fungi in all samples. We observed that the diversity and richness of endophytic fungi in L. chuanxiong increased as a result of transplanting cultivation from dam areas to mountains. Local transplantation caused minor changes in the endophytic fungus structure of L. chuanxiong, while remote transplantation caused significant changes. Compared with LZ after breeding in the dam area, the LZ after breeding on mountains has more abundant Gibberella, Phoma, Pericona, Paraphoma, and Neocosmospora. The regular pattern of the relative abundance of endophytic fungi is consistent with that of the fungus in the soil, while there are also some cases that the relative abundance of endophytic fungi is the opposite of that of soil fungi. In addition, there is a significant correlation among certain kinds of endophytic fungi whether in the soil or the plants. We have isolated more gibberellin-producing and auxin-producing fungi in the LZ cultivated in the mountains than that in the LZ cultivated in the dam area. The results of pot experiments showed that the three fungi isolated from LZ cultivated in mountainous areas can promote the development of shoots, stem nodes, and internodes of LZ, and increase the activity of plant peroxidase, catalase, phenylalanine ammonia lyase, and other enzymes. We can conclude that transplantation leads to the recombination of the host endophytic fungus, the more significant the difference in the environment is, the greater the reorganization caused by transplanting. Reorganization is determined by the soil environment, hosts, and the interaction of microorganisms. Remote transplantation is a crucial opportunity to reshuffle the micro-ecological structure of the asexual reproduction of plants, and regulate the growth, development, and resistance of plants, and prevent germplasm degradation caused by asexual reproduction.

10.
Huan Jing Ke Xue ; 32(9): 2625-31, 2011 Sep.
Artigo em Chinês | MEDLINE | ID: mdl-22165231

RESUMO

A pot experiment was conducted to examine the yield, quality and cadmium (Cd) uptake in different rice cultivars, and Cd speciation in soil after exposing to Cd (0, 1 and 5 mg x kg(-1)) in the presence of organic acids and ethylenediamine tetraacetic acid (EDTA). The results showed that general increase in the yield for cultivars Xiushui63 and II you527 was observed. Yield of two rice cultivars were in order of organic acids treatment or organic acids + 1/2EDTA treatment > EDTA treatment. The exchangeable, carbonate related and ferric-manganese oxidation related Cd increased; while organic complexation Cd and residules decreased in the presence of organic acids and EDTA. Cadmium concentrations in grain, straw and roots of both cultivars markedly reduced in the presence of organic acids and EDTA. Grain Cd concentration was the lowest for plants treated with EDTA, followed by organic acids + 1/2EDTA, and the highest Cd concentration in grain was found in the treatment with organic acids. Grain Cd concentration decreased by 9.0% to 49.3% and 16.5% to 30.6% at 1 mg x kg(-1) Cd in the presence of organic acids and EDTA, and by 12.7% to 28.5% and 4.3% to 19.1% at 5 mg x kg(-1) Cd. Cadmium concentration and accumulation in plants and total Cd content in soil were higher in Xiushui63 than in that in II you527. Grain Cd concentration decreased, and yield and quality of two rice cultivars increased at the same time in the presence of organic acids + 1/2EDTA.


Assuntos
Ácidos/farmacologia , Cádmio/metabolismo , Ácido Edético/farmacologia , Oryza/metabolismo , Poluentes do Solo/metabolismo , Absorção , Ácidos/química , Cádmio/química , Ácido Edético/química , Compostos Orgânicos/química , Compostos Orgânicos/farmacologia , Oryza/crescimento & desenvolvimento
11.
Huan Jing Ke Xue ; 32(4): 1171-6, 2011 Apr.
Artigo em Chinês | MEDLINE | ID: mdl-21717765

RESUMO

Pot experiments were carried out to investigate the influence of different Phosphor (P) levels (0, 0.3% and 0.5%) on the plant growth, activities of antioxidant enzymes, accumulation and chemical forms of cadmium (Cd) in Capsicum annuum L. when exposed to Cd (10 mg x kg(-1)). The results showed that dry weights of leaf, fruit, roots and total dry weights of plant, and concentration and accumulation of Cd significantly differed between two varieties of Capsicum annuum L. Dry weights of fruit and total plant of Chaotianjiao increased by P (0.3% and 0.5%), while that of Yanjiao425 was inhibited. Activities of catalase (CAT) were increased at first, and then reduced in the presence of P; Activities of superoxide dismutase (SOD) and peroxidase (POD) of Chaotianjiao increased with increasing levels of P, but activities of SOD and POD of Yanjiao425 decreased with increasing levels of P. Chemical forms of Cd in fruit of Capsicum annuum L. were in order of F(NaCl) > F(HAC) > F(E) > Fr > F(HC) > F(W). The total extractable Cd, ethanol-extractable Cd, hydrochloric acid-extractable Cd and residual Cd in fruit of Ynajiao425 obviously decreased in the presence of P compared to the control, while the total extractable Cd, water-extractable Cd, acetic acid-extractable Cd and residual Cd in fruit of Chaotianjiao increased. Cadmium accumulations of Capsicum annuum L. were in order of roots > stew > leaf > fruit. Cadmium accumulations in fruit and plant of Yanjiao425 were decreased by 47.7% and 58.5% , 5.5% and 13. 1% in the presence of 0.3% and 0.5% P when exposed to Cd, and Cd accumulations in fruit and plant of Chaotianjiao were decreased by 23.6% in the presence of 0.3% P.


Assuntos
Cádmio/antagonistas & inibidores , Cádmio/metabolismo , Capsicum/fisiologia , Fósforo/farmacologia , Poluentes do Solo/antagonistas & inibidores , Absorção , Cádmio/química , Capsicum/metabolismo , Poluentes do Solo/química , Poluentes do Solo/metabolismo , Especificidade da Espécie
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...