Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Animals (Basel) ; 14(9)2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38731282

RESUMO

The negative energy balance occurring in the periparturient period of cows will impede their health and postpartum performance. To target this issue, L-tryptophan was supplied to the prepartum cows. The results showed that L-tryptophan supplementation significantly increased the serum melatonin level and was accompanied with increases in SOD activity, IL-10 and colostrum IgA levels as well as decreases in MDA and IL-6 levels compared to the control cows. The incidence of postpartum diseases was significantly lower and the pregnancy rate was significantly higher in cows fed L-tryptophan than in the control group. A striking observation was that prepartum L-tryptophan supplementation not only improved the milk production but also the quality compared to the control cows. In general, supplementation with L-tryptophan in the prepartum period can improve the postpartum reproduction and lactation performance of cows to some extent.

3.
PeerJ ; 11: e15932, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37692118

RESUMO

In the current study, we explored the relationship between melatonin and lactose synthesis in in vivo and in vitro conditions. We found that long-term melatonin feeding to the dairy cows significantly reduced the milk lactose content in a dose dependent manner. This lactose reduction was not associated with a negative energy balance, since melatonin treatment did not alter the fat, glucose, or protein metabolisms of the cows. To identify the potential molecular mechanisms, the cow's mammary epithelial cells were cultured for gene expression analysis. The results showed that the effect of melatonin on lactose reduction was mediated by its receptor MT1. MT1 activation downregulated the mRNA expression of the prolactin receptor gene (PRLR), which then suppressed the gene expression of SLC35B1. SLC35B1 is a galactose transporter and is responsible for the transportation of galactose to Golgi apparatus for lactose synthesis. Its suppression reduced the lactose synthesis and the milk lactose content. The discovery of this signal transduction pathway of melatonin on lactose synthesis provides a novel aspect of melatonin's effect on carbohydrate metabolism in cows and maybe also in other mammals, including humans.


Assuntos
Melatonina , Receptores da Prolactina , Animais , Bovinos , Feminino , Metabolismo dos Carboidratos , Galactose , Lactose , Melatonina/farmacologia , Receptores de Melatonina , Transdução de Sinais
4.
Microbiome ; 11(1): 196, 2023 08 29.
Artigo em Inglês | MEDLINE | ID: mdl-37644507

RESUMO

BACKGROUND: Methane (CH4) is a major greenhouse gas, and ruminants are one of the sources of CH4 which is produced by the rumen microbiota. Modification of the rumen microbiota compositions will impact the CH4 production. In this study, the effects of melatonin on methane production in cows were investigated both in the in vitro and in vivo studies. RESULTS: Melatonin treatment significantly reduced methane production in both studies. The cows treated with melatonin reduced methane emission from their respiration by approximately 50%. The potential mechanisms are multiple. First, melatonin lowers the volatile fatty acids (VFAs) production in rumen and reduces the raw material for CH4 synthesis. Second, melatonin not only reduces the abundance of Methanobacterium which are responsible for generating methane but also inhibits the populations of protozoa to break the symbiotic relationship between Methanobacterium and protozoa in rumen to further lowers the CH4 production. The reduced VFA production is not associated with food intake, and it seems also not to jeopardize the nutritional status of the cows. This was reflected by the increased milk lipid and protein contents in melatonin treated compared to the control cows. It is likely that the energy used to synthesize methane is saved to compensate the reduced VFA production. CONCLUSION: This study enlightens the potential mechanisms by which melatonin reduces rumen methane production in dairy cows. Considering the greenhouse effects of methane on global warming, these findings provide valuable information using different approaches to achieve low carbon dairy farming to reduce the methane emission. Video Abstract.


Assuntos
Melatonina , Feminino , Animais , Bovinos , Melatonina/farmacologia , Rúmen , Agricultura , Carbono , Metano
5.
Sci Rep ; 13(1): 11133, 2023 07 10.
Artigo em Inglês | MEDLINE | ID: mdl-37429890

RESUMO

Gene editing is a promising alternative to traditional breeding for the generation of new mushroom strains. However, the current approach frequently uses Cas9-plasmid DNA to facilitate mushroom gene editing, which can leave residual foreign DNA in the chromosomal DNA raising concerns regarding genetically modified organisms. In this study, we successfully edited pyrG of Ganoderma lucidum using a preassembled Cas9-gRNA ribonucleoprotein complex, which primarily induced a double-strand break (DSB) at the fourth position prior to the protospacer adjacent motif. Of the 66 edited transformants, 42 had deletions ranging from a single base to large deletions of up to 796 bp, with 30 being a single base deletion. Interestingly, the remaining 24 contained inserted sequences with variable sizes at the DSB site that originated from the fragmented host mitochondrial DNA, E. coli chromosomal DNA, and the Cas9 expression vector DNA. The latter two were thought to be contaminated DNAs that were not removed during the purification process of the Cas9 protein. Despite this unexpected finding, the study demonstrated that editing G. lucidum genes using the Cas9-gRNA complex is achievable with comparable efficiency to the plasmid-mediated editing system.


Assuntos
Agaricales , Reishi , Reishi/genética , Sistemas CRISPR-Cas , Escherichia coli/genética , Melhoramento Vegetal , DNA Mitocondrial , Ribonucleoproteínas/genética
6.
Animals (Basel) ; 13(13)2023 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-37443982

RESUMO

The objective of this study was to investigate the effects of dietary supplementation with different types of potassium and magnesium on the reproductive performance, antioxidant capacity, and immunity of sows. Forty-five Landrace × Yorkshire sows at the late gestation stage (85 d) were randomly assigned to three groups (n = 15). Sows in the control group (CON), potassium chloride and magnesium sulfate group (PM), and potassium-magnesium sulfate group (PMS) were fed with a basal diet, a basal diet supplemented with magnesium sulfate (0.20%) and potassium chloride (0.15%), or a basal diet supplemented with potassium-magnesium sulfate (0.45%), respectively. The results showed that dietary supplementation with PMS did not yield significant effects on the reproductive performance compared with the CON group (p > 0.05). However, it significantly elevated the level of insulin-like growth factor 1 (IGF-1) in plasma and immunoglobulin A (IgA) in colostrum (p < 0.05). Furthermore, PMS significantly augmented the activities of catalase (CAT) and superoxide dismutase (SOD) while reducing the levels of malondialdehyde (MDA) in comparison to the CON group (p < 0.05). Compared with the PM group, the PMS group significantly reduced the incidence rate of intrauterine growth restriction (IUGR) (p < 0.05) and significantly decreased the concentration of the proinflammatory cytokine (TNF-α) level in plasma (p < 0.05). These results indicated that dietary supplementation with PMS during late gestation could enhance sows' antioxidant capacity and the IgA level in colostrum. These findings will provide a theoretical reference for the use of magnesium and potassium in sow production to improve sows' health.

7.
J Fungi (Basel) ; 9(3)2023 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-36983452

RESUMO

Karyotyping in Agaricus bisporus is crucial for both the isolation of homokaryotic strains and the confirmation of dikaryon establishment. For the verification of the karyotype, the A mating type loci of two homokaryotic strains, H39 and H97, were analyzed through comparative sequence analysis. The two loci showed major differences in two sequence regions designated as Region 1 and Region 2. H97 had a putative DNA transposon in Region 1 that had target site duplications (TSDs), terminal inverted repeats (TIRs), and a loop sequence, in contrast to H39, which only had the insertional target sequence. Homologous sequences of the transposon were discovered in the two different chromosomes of H97 and in one of H39, all of which have different TSDs but share high sequence homology in TIR. Region 2 shared three consensus sequences between H97 and H39. However, it was only from H97 that a large insertional sequence of unknown origin was discovered between the first and second consensus sequences. The difference in length in Region 1, employed for the verification of the A mating type, resulted in the successful verification of mating types in the heterokaryotic and homokaryotic strains. This length difference enables the discrimination between homo- and heterokaryotic spores by PCR. The present study suggests that the A mating type locus in A. bisporus H97 has evolved through transposon insertion, allowing the discrimination of the mating type, and thus the nuclear type, between A. bisporus H97 and H39.

8.
Mycobiology ; 50(5): 374-381, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36404899

RESUMO

In the mating of filamentous basidiomycetes, dikaryotic mycelia are generated through the reciprocal movement of nuclei to a monokaryotic cytoplasm where a nucleus of compatible mating type resides, resulting in the establishment of two different dikaryotic strains having the same nuclei but different mitochondria. To better understand the role of mitochondria in mushrooms, we created four sets of dikaryotic strains of Lentinula edodes, including B2 × E13 (B2 side) and B2 × E13 (E13 side), B5 × E13 (B5 side) and B5 × E13 (E13 side), E8 × H3 (E8 side) and E8 × H3 (H3 side), and K3 × H3 (K3 side) and K3 × H3 (H3 side). The karyotypes and mitochondrial types of the dikaryotic strains were successfully identified by the A mating type markers and the mitochondrial variable length tandem repeat markers, respectively. Comparative analyses of the dikaryotic strains on the mycelial growth, substrate browning, fruiting characteristics, and mitochondrial gene expression revealed that certain mitochondria are more effective in the mycelial growth and the production of fruiting body, possibly through the activated energy metabolism. Our findings indicate that mitochondria affect the physiology of dikaryotic strains having the same nuclear information and therefore a selection strategy aimed at mitochondrial function is needed in the development of new mushroom strain.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...