Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Chem Commun (Camb) ; 60(30): 4052-4055, 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38502200

RESUMO

N-doped NiFe(B) (oxy)hydroxide can promote the catalytic activity for an alkaline oxygen evolution reaction (OER) significantly, but fabrication is difficult. Herein, we introduced a B-induction route to the N-NiFe(B) (oxy)hydroxide monolithic electrode under a relatively low temperature. We observed an excellent catalytic performance benefiting from an optimal electronic structure, enlarged surface area and improved hydrophilicity. Moreover, this mild protocol could be extended to fabricate an S-doped NiFe-based catalyst. This research could aid large-scale manufacture.

2.
Phys Chem Chem Phys ; 25(27): 18400-18405, 2023 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-37401410

RESUMO

Two-dimensional (2D) ferroelectric materials have important application potential in device miniaturization due to their characteristics of only being a few atomic layers thick and non-volatility. How to design high-performance ferroelectric memory devices based on 2D ferroelectric materials has attracted extensive attention. In this work, based on the 2D organic ferroelectric material semi-hydroxylized graphane (SHLGA), which has in-plane ferroelectric polarization along three different directions, we construct a 2D organic ferroelectric tunnel junction (FTJ). By means of density functional theory (DFT) and the non-equilibrium Green's function (NEGF) method, we calculate the transport properties of the FTJ under different polarizations and obtain a giant tunnel electroresistance (TER) ratio of 7.55 × 104%. We find that the mechanism behind the TER effect in the organic SHLGA is based on the unique built-in electric field. That is, among the three ferroelectric polarization directions, any two directions have an angle of 120°. As a result, the built-in electric fields along the transport direction of the FTJ under different ferroelectric polarization directions are different. Moreover, our study shows that the giant TER effect can also be achieved by utilizing the asymmetry of the polarization along the transport direction of the ferroelectric material itself, which provides another route for the design of 2D FTJs.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...