Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PLoS One ; 12(9): e0185111, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28931042

RESUMO

Previously, Bithionol (BT) was shown to enhance the chemosensitivity of ovarian cancer cell lines to cisplatin treatment. In the present study, we focused on the anti-tumor potential of the BT-paclitaxel combination when added to a panel of ovarian cancer cell lines. This in vitro study aimed to 1) determine the optimum schedule for combination of BT and paclitaxel and 2) assess the nature and mechanism(s) underlying BT-paclitaxel interactions. The cytotoxic effects of both drugs either alone or in combination were assessed by presto-blue cell viability assay using six human ovarian cancer cell lines. Inhibitory concentrations to achieve 50% cell death (IC50) were determined for BT and paclitaxel in each cell line. Changes in levels of cleaved PARP, XIAP, bcl-2, bcl-xL, p21 and p27 were determined via immunoblot. Luminescent and colorimetric assays were used to determine caspases 3/7 and autotaxin (ATX) activity. Cellular reactive oxygen species (ROS) were measured by flow cytometry. Our results show that the efficacy of the BT-paclitaxel combination depends upon the concentrations and sequence of addition of paclitaxel and BT. Pretreatment with BT followed by paclitaxel resulted in antagonistic interactions whereas synergistic interactions were observed when both drugs were added simultaneously or when cells were pretreated with paclitaxel followed by BT. Synergistic interactions between BT and paclitaxel were attributed to increased ROS generation and enhanced apoptosis. Decreased expression of pro-survival factors (XIAP, bcl-2, bcl-xL) and increased expression of pro-apoptotic factors (caspases 3/7, PARP cleavage) was observed. Additionally, increased expression of key cell cycle regulators p21 and p27 was observed. These results show that BT and paclitaxel interacted synergistically at most drug ratios which, however, was highly dependent on the sequence of the addition of drugs. Our results suggest that BT-paclitaxel combination therapy may be effective in sensitizing ovarian cancer cells to paclitaxel treatment, thus mitigating some of the toxic effects associated with high doses of paclitaxel.


Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Neoplasias Ovarianas/tratamento farmacológico , Apoptose/efeitos dos fármacos , Bitionol/administração & dosagem , Ciclo Celular/efeitos dos fármacos , Ciclo Celular/fisiologia , Linhagem Celular Tumoral , Cisplatino/farmacologia , Relação Dose-Resposta a Droga , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Ensaios de Seleção de Medicamentos Antitumorais , Feminino , Humanos , Concentração Inibidora 50 , Neoplasias Ovarianas/metabolismo , Neoplasias Ovarianas/patologia , Paclitaxel/administração & dosagem , Diester Fosfórico Hidrolases/metabolismo , Espécies Reativas de Oxigênio/metabolismo
2.
BMC Cancer ; 17(1): 49, 2017 01 13.
Artigo em Inglês | MEDLINE | ID: mdl-28086831

RESUMO

BACKGROUND: Combination drug therapy appears a promising approach to overcome drug resistance and reduce drug-related toxicities in ovarian cancer treatments. In this in vitro study, we evaluated the antitumor efficacy of cisplatin in combination with Bithionol (BT) against a panel of ovarian cancer cell lines with special focus on cisplatin-sensitive and cisplatin-resistant cell lines. The primary objectives of this study are to determine the nature of the interactions between BT and cisplatin and to understand the mechanism(s) of action of BT-cisplatin combination. METHODS: The cytotoxic effects of drugs either alone or in combination were evaluated using presto-blue assay. Cellular reactive oxygen species were measured by flow cytometry. Immunoblot analysis was carried out to investigate changes in levels of cleaved PARP, XIAP, bcl-2, bcl-xL, p21 and p27. Luminescent and colorimetric assays were used to test caspases 3/7 and ATX activity. RESULTS: The efficacy of the BT-cisplatin combination depends upon the cell type and concentrations of cisplatin and BT. In cisplatin-sensitive cell lines, BT and cisplatin were mostly antagonistic except when used at low concentrations, where synergy was observed. In contrast, in cisplatin-resistant cells, BT-cisplatin combination treatment displayed synergistic effects at most of the drug ratios/concentrations. Our results further revealed that the synergistic interaction was linked to increased reactive oxygen species generation and apoptosis. Enhanced apoptosis was correlated with loss of pro-survival factors (XIAP, bcl-2, bcl-xL), expression of pro-apoptotic markers (caspases 3/7, PARP cleavage) and enhanced cell cycle regulators p21 and p27. CONCLUSION: In cisplatin-resistant cell lines, BT potentiated cisplatin-induced cytotoxicity at most drug ratios via enhanced ROS generation and modulation of key regulators of apoptosis. Low doses of BT and cisplatin enhanced efficiency of cisplatin treatment in all the ovarian cancer cell lines tested. Our results suggest that novel combinations such as BT and cisplatin might be an attractive therapeutic approach to enhance ovarian cancer chemosensitivity. Combining low doses of cisplatin with subtherapeutic doses of BT can ultimately lead to the development of an innovative combination therapy to reduce/prevent the side effects normally occurring when high doses of cisplatin are administered.


Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Bitionol/farmacologia , Cisplatino/farmacologia , Neoplasias Ovarianas/tratamento farmacológico , Apoptose/efeitos dos fármacos , Biomarcadores Tumorais/metabolismo , Linhagem Celular Tumoral , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Feminino , Humanos , Neoplasias Ovarianas/metabolismo , Espécies Reativas de Oxigênio/metabolismo
3.
Proc Natl Acad Sci U S A ; 111(13): 4776-81, 2014 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-24639537

RESUMO

Tuning the threshold voltage of a transistor is crucial for realizing robust digital circuits. For silicon transistors, the threshold voltage can be accurately controlled by doping. However, it remains challenging to tune the threshold voltage of single-wall nanotube (SWNT) thin-film transistors. Here, we report a facile method to controllably n-dope SWNTs using 1H-benzoimidazole derivatives processed via either solution coating or vacuum deposition. The threshold voltages of our polythiophene-sorted SWNT thin-film transistors can be tuned accurately and continuously over a wide range. Photoelectron spectroscopy measurements confirmed that the SWNT Fermi level shifted to the conduction band edge with increasing doping concentration. Using this doping approach, we proceeded to fabricate SWNT complementary inverters by inkjet printing of the dopants. We observed an unprecedented noise margin of 28 V at V(DD) = 80 V (70% of 1/2V(DD)) and a gain of 85. Additionally, robust SWNT complementary metal-oxide-semiconductor inverter (noise margin 72% of 1/2VDD) and logic gates with rail-to-rail output voltage swing and subnanowatt power consumption were fabricated onto a highly flexible substrate.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...