Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Dalton Trans ; 50(43): 15841-15848, 2021 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-34708841

RESUMO

Organic light emitting diodes (OLEDs) and amorphous oxide semiconductors (AOSs), which are very important technologies in high performance flexible displays, have issues related to degradation due to diffusion of water and hydrogen, respectively. To solve these issues, gas diffusion barrier properties were evaluated with aluminum oxide deposited by atomic layer deposition (ALD) and alucone deposited by molecular layer deposition (MLD) using trimethylaluminum (TMA) as a metal precursor and H2O and hydroquinone (HQ) as co-reactants, respectively. The water vapor transmission rate (WVTR) and hydrogen gas permeability (HGP) were measured for the fabricated films via electrical calcium tests and vacuum time-lag, respectively. To enhance the diffusion barrier properties, Al2O3/alucone hybrid multi-layer structures were successfully deposited through an in situ ALD/MLD process. The 4.5 dyads of the Al2O3/alucone structure showed improved barrier properties compared to the single Al2O3 film with a WVTR of 8.24 × 10-5 g m-2 day-1 and a HGP of 9.93 × 10-5 barrer, and factors related to gas diffusion in multi-layer structures were discussed. The stability to external stress was also evaluated based on the WVTR change rate after the bending test, and we confirmed that the stability of the multi-layer structures was improved due to the flexibility of inserted alucone layers. All the developed structures had a high optical transmittance of >80% in the 300-800 nm wavelength region based on UV-vis measurements.

2.
ACS Appl Mater Interfaces ; 13(33): 39584-39594, 2021 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-34383478

RESUMO

High-density SnOx and SiOx thin films were deposited via atomic layer deposition (ALD) at low temperatures (100 °C) using tetrakis(dimethylamino)tin(IV) (TDMASn) and di-isopropylaminosilane (DIPAS) as precursors and hydrogen peroxide (H2O2) and O2 plasma as reactants, respectively. The thin-film encapsulation (TFE) properties of SnOx and SiOx were demonstrated with thickness dependence measurements of the water vapor transmission rate (WVTR) evaluated at 50 °C and 90% relative humidity, and different TFE performance tendencies were observed between thermal and plasma ALD SnOx. The film density, crystallinity, and pinholes formed in the SnOx film appeared to be closely related to the diffusion barrier properties of the film. Based on the above results, a nanolaminate (NL) structure consisting of SiOx and SnOx deposited using plasma-enhanced ALD was measured using WVTR (H2O molecule diffusion) at 2.43 × 10-5 g/m2 day with a 10/10 nm NL structure and time-lag gas permeation measurement (H2 gas diffusion) for applications as passivation layers in various electronic devices.

3.
ACS Appl Mater Interfaces ; 12(3): 3784-3791, 2020 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-31878779

RESUMO

We investigated the influence of the multilayered hybrid buffer consisting of Al2O3/PA (polyacrylic) organic layer/Al2O3 on the electrical and mechanical properties of amorphous InGaZnO (a-IGZO) thin-film transistors (TFTs). The multilayered organic/inorganic hybrid buffer has multiple beneficial effects on the flexible TFTs under repetitive bending stress. First, compared to the PA or Al2O3 single-layered buffer, the multilayered hybrid buffer showed an improved WVTR value of 1.1 × 10-4 g/m2 day. Even after 40,000 bending cycles, the WVTR value of the hybrid buffer increased only by 17%, while the WVTR value of the Al2O3 layer doubled after cyclical bending stress. We also confirmed that the hybrid buffer has advantages in mechanical durability of the TFT layers because of the change in the position of the neutral plane and the strain reduction effect by the PA organic layer. When we fabricate a top-gate a-IGZO TFT with the hybrid buffer layer (HB TFT), the device shows Vth = 0.74 V, µFE = 14.4 cm2/V·s, a subthreshold slope of 0.27 V/dec, and hysteresis of 0.21 V, which are superior to that of TFTs fabricated on an Al2O3 single-layer buffer (IB TFT). From the X-ray photoelectron spectroscopy and elastic recoil detection analysis, the difference in the electrical performance of TFTs could be explained by hydrogen-related molecules. After annealing at 270 °C, the amounts of hydrogen found in the a-IGZO layer for the IB, HB, and OB TFTs were 3.57 × 1021, 5.77 × 1021, and 7.34 × 1021 atoms/cm3, respectively. A top-gate bottom-contact structured a-IGZO TFT fabricated on the PA layer (OB TFT) showed a gate dielectric breakdown because of excessively high hydrogen content and high nonbonding oxygen content. On the other hand, HB TFTs showed better positive bias stability because of the higher hydrogen concentration, as hydrogen (when not excessive) is beneficial in passivating electron traps. Finally, we conducted 60,000 repetitive bending cycles on IB TFTs and HB TFTs with various bending radii down to 1.5 mm. The HB TFT shows improved mechanical durability and exhibits less electrical degradation during and after repetitive bending stress, compared to the IB TFT.

4.
J Econ Entomol ; 111(2): 725-731, 2018 04 02.
Artigo em Inglês | MEDLINE | ID: mdl-29401226

RESUMO

The Sakhalin pine longicorn, Monochamus saltuarius (Gebler; Coleoptera: Cerambycidae), is an insect vector of the pine wilt nematode (PWN), Bursaphelenchus xylophilus (Steiner et Buhrer) Nickle, and is widely distributed in central Korea. M. saltuarius is a forest pest that seriously damages Pinus densiflora (Siebold et Zucc, Pinales: Pinaceae) and Pinus koraiensis (Siebold & Zucc, Pinales: Pinaceae) forests. We examined the effect of electron beam irradiation on the mating, DNA damage and ovarian development of M. saltuarius adults and sought to identify the optimal dose for sterilizing insects. When the adults were irradiated with electron beams, both females and males were completely sterile at 200 Gy. In a reciprocal crossing experiment between unirradiated and irradiated adults, the reproductive ability of wild adults was recovered by crossing with wild adults even after crossing previously with sterile adults. When a pair of unirradiated adults (♀- × â™‚-) and 10 or 20 irradiated adults (♀+ or ♂+) were kept together, the control effect was as high as 80~90%. After electron beam irradiation at 200 Gy, the DNA of M. saltuarius adults was damaged, the ovarian development of female adults was inhibited, and the level of vitellogenin was significantly decreased compared with that in unirradiated female adults. These results suggest that pine wilt disease can be effectively controlled if a large number of sterilized M. saltuarius male adults are released into the field.


Assuntos
Besouros , Elétrons , Controle de Insetos , Insetos Vetores , Animais , Besouros/crescimento & desenvolvimento , Besouros/fisiologia , Dano ao DNA , Feminino , Fertilidade , Masculino , Ovário/crescimento & desenvolvimento , Pinus/parasitologia , Doenças das Plantas/parasitologia , Doenças das Plantas/prevenção & controle , Tylenchida/fisiologia
5.
ACS Appl Mater Interfaces ; 9(49): 42928-42934, 2017 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-29161024

RESUMO

Silicon dioxide (SiO2) films were synthesized by plasma-enhanced atomic layer deposition (PEALD) using BTBAS [bis(tertiarybutylamino) silane] as the precursor and O2 plasma as the reactant, at a temperature range from 50 to 200 °C. While dielectric constant values larger than 3.7 are obtained at all deposition temperatures, the leakage current levels are drastically reduced to below 10-12 A at temperatures above 150 °C, which are similar to those obtained in thermally oxidized and PECVD grown SiO2. Thin film transistors (TFTs) based on In-Sn-Zn-O (ITZO) semiconductors were fabricated using thermal SiO2, PECVD SiO2, and PEALD SiO2 grown at 150 °C as the gate dielectrics, and superior device performance and stability are observed in the last case. A linear field effect mobility of 68.5 cm2/(V s) and a net threshold voltage shift (ΔVth) of approximately 1.2 V under positive bias stress (PBS) are obtained using the PEALD SiO2 as the gate insulator. The relatively high concentration of hydrogen in the PEALD SiO2 is suggested to induce a high carrier density in the ITZO layer deposited onto it, which results in enhanced charge transport properties. Also, it is most likely that the hydrogen atoms have passivated the electron traps related to interstitial oxygen defects, thus resulting in improved stability under PBS. Although the PECVD SiO2 contains a hydrogen concentration similar to that of PEALD SiO2, its relatively large surface roughness appears to induce scattering effects and the generation of electron traps, which result in inferior device performance and stability.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...