Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Molecules ; 29(7)2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38611766

RESUMO

Osteoarthritis (OA) is a chronic joint disease that causes pathological changes in articular cartilage, synovial membrane, or subchondral bone. Conventional treatments for OA include surgical and non-surgical methods. Surgical treatment is suitable for patients in the terminal stage of OA. It is often the last choice because of the associated risks and high cost. Medication of OA mainly includes non-steroidal anti-inflammatory drugs, analgesics, hyaluronic acid, and cortico-steroid anti-inflammatory drugs. However, these drugs often have severe side effects and cannot meet the needs of patients. Therefore, safe and clinically appropriate long-term treatments for OA are urgently needed. Apoptosis is programmed cell death, which is a kind of physiologic cell suicide determined by heredity and conserved by evolution. Inhibition of apoptosis-related pathways has been found to prevent and treat a variety of diseases. Excessive apoptosis can destroy cartilage homeostasis and aggravate the pathological process of OA. Therefore, inhibition of apoptosis-related factors or signaling pathways has become an effective means to treat OA. Phytochemicals are active ingredients from plants, and it has been found that phytochemicals can play an important role in the prevention and treatment of OA by inhibiting apoptosis. We summarize preclinical and clinical studies of phytochemicals for the treatment of OA by inhibiting apoptosis. The results show that phytochemicals can treat OA by targeting apoptosis-related pathways. On the basis of improving some phytochemicals with low bioavailability, poor water solubility, and high toxicity by nanotechnology-based drug delivery systems, and at the same time undergoing strict clinical and pharmacological tests, phytochemicals can be used as a potential therapeutic drug for OA and may be applied in clinical settings.


Assuntos
Osteoartrite , Humanos , Osteoartrite/tratamento farmacológico , Compostos Fitoquímicos/farmacologia , Compostos Fitoquímicos/uso terapêutico , Apoptose , Anti-Inflamatórios não Esteroides , Disponibilidade Biológica
2.
Exp Gerontol ; 185: 112336, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-38042379

RESUMO

The immune system is an important defense against diseases, and it is essential to maintain the homeostasis of the body's internal environment. Under normal physiological conditions, the steady state of the immune system should be sustained to play normal immune response and immune function. Exploring the molecular mechanism of maintaining immune homeostasis under physiological and pathological conditions will provides understanding of the pathogenesis of autoimmune diseases, infections, metabolic disorders, and tumors, as well as new ideas and molecular targets for the prevention and treatment of these diseases. Hippo signaling pathway can not only regulate immune cells such as macrophages, T cells and dendritic cells, but also interact with immune-related signaling pathways such as NF-kB signaling pathway, TGF-ß signaling pathway and Toll-like receptor signaling pathway, so as to resist the internal environment disorder caused by the invasion of exogenous pathogenic microorganisms and maintain the internal environment stability and physiological balance of the body. Hippo signaling pathway is also involved in the pathological process of immune system-related diseases such as rheumatoid arthritis, inflammatory bowel disease and psoriasis. Hippo pathway is closely related to organ development, stem cell biology, regeneration, and tumor biology. It affects cell differentiation by participating in extracellular and intracellular physiological signal reactions, sensing cell environment, and coordinating cell reactions. This pathway is crucial in maintaining immune homeostasis. This review summarizes the mechanism of Hippo pathway in different immune cells and some autoimmune diseases and the interaction between different immune signaling pathways and Hippo signaling pathway. It aims to explore the role of Hippo in autoimmune diseases and provide theoretical and practical basis for the treatment of autoimmune diseases through Hippo signaling pathway.


Assuntos
Doenças Autoimunes , Neoplasias , Humanos , Via de Sinalização Hippo , Proteínas Serina-Treonina Quinases/metabolismo , Transdução de Sinais/fisiologia
3.
Artigo em Inglês | MEDLINE | ID: mdl-35105686

RESUMO

BACKGROUND AND OBJECTIVES: Demyelinating diseases in the CNS are characterized by myelin sheath destruction or formation disorder that leads to severe neurologic dysfunction. Remission of such diseases is largely dependent on the differentiation of oligodendrocytes precursor cells (OPCs) into mature myelin-forming OLGs at the demyelinated lesions, which is defined as remyelination. We discover that baicalin (BA), a natural flavonoid, in addition to its well-known antiinflammatory effects, directly stimulates OLG maturation and CNS myelin repair. METHODS: To investigate the function of BA on CNS remyelination, we develop the complementary in vivo and in vitro models, including physiologic neonatal mouse CNS myelinogenesis model, pathologic cuprizone-induced (CPZ-induced) toxic demyelination model, and postnatal OLG maturation assay. Furthermore, molecular docking, pharmacologic regulation, and transgenic heterozygous mice were used to clarify the target and action of the mechanism of BA on myelin repair promotion. RESULTS: Administration of BA was not only merely effectively enhanced CNS myelinogenesis during postnatal development but also promoted remyelination and reversed the coordination movement disorder in the CPZ-induced toxic demyelination model. Of note, myelin-promoting effects of BA on myelination or regeneration is peroxisome proliferator-activated receptor γ (PPARγ) signaling-dependent. DISCUSSION: Our work demonstrated that BA promotes myelin production and regeneration by activating the PPARγ signal pathway and also confirmed that BA is an effective natural product for the treatment of demyelinating diseases.


Assuntos
Anti-Inflamatórios não Esteroides/farmacologia , Doenças Desmielinizantes/tratamento farmacológico , Flavonoides/farmacologia , Transtornos das Habilidades Motoras/tratamento farmacológico , PPAR gama/efeitos dos fármacos , Remielinização/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Animais , Animais Recém-Nascidos , Modelos Animais de Doenças , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos
4.
Front Immunol ; 13: 810317, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35197980

RESUMO

Rheumatoid arthritis (RA) is one of the most common autoimmune diseases that affect synovitis, bone, cartilage, and joint. RA leads to bone and cartilage damage and extra-articular disorders. However, the pathogenesis of RA is still unclear, and the lack of effective early diagnosis and treatment causes severe disability, and ultimately, early death. Accumulating evidence revealed that the regulatory network that includes long non-coding RNAs (lncRNAs)/circular RNAs (circRNAs), micro RNAs (miRNAs), and messenger RNAs (mRNA) plays important roles in regulating the pathological and physiological processes in RA. lncRNAs/circRNAs act as the miRNA sponge and competitively bind to miRNA to regulate the expression mRNA in synovial tissue, FLS, and PBMC, participate in the regulation of proliferation, apoptosis, invasion, and inflammatory response. Thereby providing new strategies for its diagnosis and treatment. In this review, we comprehensively summarized the regulatory mechanisms of lncRNA/circRNA-miRNA-mRNA network and the potential roles of non-coding RNAs as biomarkers and therapeutic targets for the diagnosis and treatment of RA.


Assuntos
RNA Longo não Codificante/genética , Artrite Reumatoide/metabolismo , Biomarcadores , Perfilação da Expressão Gênica , Redes Reguladoras de Genes , Humanos , Leucócitos Mononucleares/metabolismo , MicroRNAs/genética , RNA Circular , RNA Mensageiro/genética , Transcriptoma
6.
Front Pharmacol ; 10: 863, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31427972

RESUMO

Scopoletin, a phenolic coumarin derived from many medical or edible plants, is involved in various pharmacological functions. In the present study, we showed that Scopoletin effectively ameliorated experimental autoimmune encephalomyelitis (EAE), an animal model of multiple sclerosis (MS), through novel regulatory mechanisms involving inhibition of NF-κB activity in dendritic cells (DCs). Scopoletin treatment significantly improved the severity of the disease and prominently decreased inflammation and demyelination of central nervous system (CNS) in EAE mice. Disease alleviation correlated with the downregulation of major histocompatibility complex (MHC) class II, CD80 and CD86, expressed on DCs of CNS or spleens, and the infiltration and polarization of encephalitogenic Th1/Th17 cells. Consistent with the in vivo data, Scopoletin-treated, bone marrow-derived dendritic cells (BM-DCs) exhibited reduced expression of MHC class II and costimulatory molecules (e.g., CD80 and CD86) and reduced NF-κB phosphorylation. These findings, for the first time, demonstrated the ability of Scopoletin to impair DC activation, downregulating pathogenic Th1/Th17 inflammatory cell responses and, eventually, reducing EAE severity. Our study demonstrates new evidence that natural products derived from medical or edible plants, such as Scopoletin, will be valuable in developing a novel therapeutic agent for MS in the future.

7.
Mol Nutr Food Res ; 63(18): e1801356, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31313461

RESUMO

SCOPE: Multiple sclerosis (MS) is an inflammatory demyelinating autoimmune disorder, with increasing incidence worldwide but unknown etiology. 6-Gingerol (6-GIN), a major dietary compound found in ginger rhizome, has immunomodulatory activity. However, its role in autoimmune diseases, as well as the underlying mechanisms, are unclear. In this study, it is evaluated if 6-GIN can effectively ameliorate the clinical disease severity of experimental autoimmune encephalomyelitis, an animal model of MS. METHODS AND RESULTS: Clinical scores of experimental autoimmune encephalomyelitis (EAE) mice are recorded daily. Inflammation of periphery and neuroinflammation of EAE mice are determined by flow cytometry analysis, ELISA, and histopathological analysis, and results show that 6-GIN significantly inhibits inflammatory cell infiltration from the periphery into the central nervous system and reduces neuroinflammation and demyelination. Flow cytometry analysis, ELISA, and quantitative PCR show that 6-GIN could suppress lipolysaccharide-induced dendritic cell (DC) activation and induce the tolerogenic DCs. Immunoblot analysis reveals that the phosphorylation of nuclear factor-κB and mitogen-activated protein kinase, two critical regulators of inflammatory signaling, are significantly inhibited in 6-GIN-treated DCs. CONCLUSION: The results of this study demonstrate that 6-GIN has significant potential as a novel anti-inflammatory agent for the treatment of autoimmune diseases such as MS via direct modulatory effects on DCs.


Assuntos
Catecóis/farmacologia , Células Dendríticas/efeitos dos fármacos , Encefalomielite Autoimune Experimental/tratamento farmacológico , Álcoois Graxos/farmacologia , Animais , Diferenciação Celular/efeitos dos fármacos , Células Dendríticas/imunologia , Células Dendríticas/metabolismo , Encefalomielite Autoimune Experimental/imunologia , Feminino , Lipopolissacarídeos/farmacologia , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Camundongos Endogâmicos C57BL , NF-kappa B/metabolismo , Células Th17/citologia , Células Th17/efeitos dos fármacos
8.
Front Cell Neurosci ; 13: 247, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31231194

RESUMO

Oligodendrocyte progenitor cells (OPCs) are a subtype of glial cells responsible for myelin regeneration. Oligodendrocytes (OLGs) originate from OPCs and are the myelinating cells in the central nervous system (CNS). OLGs play an important role in the context of lesions in which myelin loss occurs. Even though many protocols for isolating OPCs have been published, their cellular yield remains a limit for clinical application. The protocol proposed here is novel and has practical value; in fact, OPCs can be generated from a source of autologous cells without gene manipulation. Our method represents a rapid, and high-efficiency differentiation protocol for generating mouse OLGs from bone marrow-derived cells using growth-factor defined media. With this protocol, it is possible to obtain mature OLGs in 7-8 weeks. Within 2-3 weeks from bone marrow (BM) isolation, after neurospheres formed, the cells differentiate into Nestin+ Sox2+ neural stem cells (NSCs), around 30 days. OPCs specific markers start to be expressed around day 38, followed by RIP+O4+ around day 42. CNPase+ mature OLGs are finally obtained around 7-8 weeks. Further, bone marrow-derived OPCs exhibited therapeutic effect in shiverer (Shi) mice, promoting myelin regeneration and reducing the tremor. Here, we propose a method by which OLGs can be generated starting from BM cells and have similar abilities to subventricular zone (SVZ)-derived cells. This protocol significantly decreases the timing and costs of the OLGs differentiation within 2 months of culture.

9.
Front Immunol ; 9: 1807, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30150982

RESUMO

Medicinal plants as a rich pool for developing novel small molecule therapeutic medicine have been used for thousands of years. Carnosol as a bioactive diterpene compound originated from Rosmarinus officinalis (Rosemary) and Salvia officinalis, herbs extensively applied in traditional medicine for the treatment of multiple autoimmune diseases (1). In this study, we investigated the therapeutic effects and molecule mechanism of carnosol in experimental autoimmune encephalomyelitis (EAE), an animal model of multiple sclerosis (MS). Carnosol treatment significantly alleviated clinical development in the myelin oligodendrocyte glycoprotein (MOG35-55) peptide-induced EAE model, markedly decreased inflammatory cell infiltration into the central nervous system and reduced demyelination. Further, carnosol inhibited Th17 cell differentiation and signal transducer and activator of transcription 3 phosphorylation, and blocked transcription factor NF-κB nuclear translocation. In the passive-EAE model, carnosol treatment also significantly prevented Th17 cell pathogenicity. Moreover, carnosol exerted its therapeutic effects in the chronic stage of EAE, and, remarkably, switched the phenotypes of infiltrated macrophage/microglia. Taken together, our results show that carnosol has enormous potential for development as a therapeutic agent for autoimmune diseases such as MS.


Assuntos
Abietanos/farmacologia , Diferenciação Celular/efeitos dos fármacos , Microglia/efeitos dos fármacos , Microglia/imunologia , Células Th17/citologia , Células Th17/efeitos dos fármacos , Animais , Biomarcadores , Citocinas , Encefalomielite Autoimune Experimental , Feminino , Imunomodulação/efeitos dos fármacos , Imunofenotipagem , Macrófagos/efeitos dos fármacos , Macrófagos/imunologia , Macrófagos/metabolismo , Camundongos , Microglia/metabolismo , Esclerose Múltipla/imunologia , Esclerose Múltipla/metabolismo , Esclerose Múltipla/patologia , NF-kappa B/metabolismo , Fenótipo , Fosforilação , Fator de Transcrição STAT3/metabolismo , Subpopulações de Linfócitos T/efeitos dos fármacos , Subpopulações de Linfócitos T/imunologia , Subpopulações de Linfócitos T/metabolismo , Células Th17/imunologia , Células Th17/metabolismo
10.
J Agric Food Chem ; 66(15): 3783-3792, 2018 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-29613792

RESUMO

The nutshell of Xanthoceras sorbifolia, a waste product in the production of edible oil, is rich in health-promoting phenolic acids. However, the individual constituents, bioactivities, and mechanism of action are largely unknown. In this study, 20 phenolic compounds were characterized in nutshell extract (NE) of X. sorbifolia by gas chromatography-mass spectrometry. Four established in vitro studies showed that NE has significant antioxidant potential. Results in vivo indicated that oral administration of NE effectively ameliorated clinical disease severity of experimental autoimmune encephalomyelitis (EAE) and reduced the neuroinflammation and the central nervous system (CNS) demyelination. The underlying mechanism of NE-induced effects involved decreased penetration of pathogenic immunocyte into the CNS, a reduced production of proinflammatory cytokines and factors, and suppressed differentiation of type 1 T helper and type 17 T helper cells through the Janus kinase/signal transducer and activator of transcription pathway. Taken together, our studies showed that X. sorbifolia nutshell, considered a waste material in the food industry, is a novel source of a natural antioxidant and immunomodulator.


Assuntos
Anti-Inflamatórios/administração & dosagem , Antioxidantes/administração & dosagem , Encefalomielite Autoimune Experimental/tratamento farmacológico , Fenóis/administração & dosagem , Extratos Vegetais/administração & dosagem , Sapindaceae/química , Animais , Anti-Inflamatórios/química , Anti-Inflamatórios/isolamento & purificação , Antioxidantes/química , Antioxidantes/isolamento & purificação , Citocinas/genética , Citocinas/imunologia , Encefalomielite Autoimune Experimental/genética , Encefalomielite Autoimune Experimental/imunologia , Feminino , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Nozes/química , Fenóis/química , Fenóis/isolamento & purificação , Extratos Vegetais/química , Extratos Vegetais/isolamento & purificação , Células Th1/efeitos dos fármacos , Células Th1/imunologia , Células Th17/efeitos dos fármacos , Células Th17/imunologia
11.
Mol Ther ; 26(2): 582-592, 2018 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-29275848

RESUMO

MicroRNAs (miRNAs) are small, non-coding RNAs involved in immune response regulation. Specific miRNAs have been linked to the development of various autoimmune diseases; however, their contribution to the modulation of CNS-directed cellular infiltration remains unclear. In this study, we found that miR-23b, in addition to its reported functions in the suppression of IL-17-associated autoimmune inflammation, halted the progression of experimental autoimmune encephalomyelitis (EAE), an animal model of multiple sclerosis (MS), by directly inhibiting the migration of pathogenic leukocytes to the CNS. We demonstrated that miR-23b was specifically decreased during the acute phase of EAE and that overexpression of miR-23b resulted in a defect in leukocyte migration and strong resistance to EAE. Furthermore, we found that miR-23b suppressed leukocyte migration of EAE by targeting CCL7, a chemokine that attracts monocytes during inflammation and metastasis. Finally, in the adoptive transfer model, miR-23b reduced the severity of EAE by inhibiting the migration of pathogenic T cells to the CNS rather than diminishing the encephalitogenesis of T cells. Taken together, our results characterize a novel aspect of miR-23b function in leukocyte migration, and they identify miR-23b as a potential therapeutic target in the amelioration of MS and likely other autoimmune diseases.


Assuntos
Quimiocina CCL7/genética , Quimiotaxia de Leucócito/genética , Encefalomielite Autoimune Experimental/genética , Encefalomielite Autoimune Experimental/imunologia , Leucócitos/imunologia , Leucócitos/metabolismo , MicroRNAs/genética , Regiões 3' não Traduzidas , Animais , Encefalomielite Autoimune Experimental/patologia , Feminino , Regulação da Expressão Gênica , Imunofenotipagem , Ativação Linfocitária/genética , Ativação Linfocitária/imunologia , Camundongos , Interferência de RNA , Linfócitos T/imunologia , Linfócitos T/metabolismo
12.
Zhonghua Yan Ke Za Zhi ; 49(6): 521-5, 2013 Jun.
Artigo em Chinês | MEDLINE | ID: mdl-24119965

RESUMO

OBJECTIVE: To investigate the distribution and biological roles of voltage-dependent calcium channel (VDCC) α1F subunit in murine retina. METHODS: Experimental study.α1F(-/-) (homozygous mutant) mice (n = 35) and α1F(+/+) (wild type) mice (n = 35) were used in this study. Immunohistochemistry was performed to determine the expression of VDCC α1F subunit in the mouse retina. Retinae in α1F(-/-) mice and age-matched control mice at 3, 6, 9, 14-day and 3-month after birth were paraffin embedded, sectioned and HE stained, and full-field electroretinogram (ERG) were also recorded at these time points.Statistics were based on independent samples t-test. RESULTS: (1) α1F subunit was absent in α1F(-/-) mice retina. But in α1F(+/+) mice retina, α1F subunit was expressed most strongly in the outer plexiform layer (OPL), less in the inner plexiform layer (IPL) and ganglion cell layer (GCL). (2) OPL thickness in the subunit deficient mice gradually reduced after birth and lost at adult age. (3) In dark-adapted ERGs,standard response showed that the b-wave amplitude of α1F(-/-) mice [(163.8 ± 26.7) µV] significantly decreased compared with that of α1F(+/+) mice [(408.4 ± 54.5) µV] (t = -9.017, P = 0.000), whereas the a-wave amplitude of α1F(-/-) group [(208.2 ± 27.3) µV] was similar to that of control group [(196.0 ± 24.2) µV] (t = 0.748, P = 0.476). CONCLUSION: This study demonstrates that the lack of VDCC α1F subunit affect the structure and function in the OPL of the murine retina.


Assuntos
Canais de Cálcio Tipo L/genética , Retina/patologia , Retina/fisiopatologia , Animais , Eletrorretinografia , Homozigoto , Camundongos , Camundongos Knockout , Mutação
13.
Zhonghua Yi Xue Yi Chuan Xue Za Zhi ; 24(4): 382-6, 2007 Aug.
Artigo em Chinês | MEDLINE | ID: mdl-17680525

RESUMO

OBJECTIVE: To increase the success rate of prenatal diagnosis for classical phenylketonuria(PKU). METHODS: Three new short tandem repeat (STR) markers (PAH26, PAH32 and PAH9) within and surrounding phenylalanine hydroxylase(PAH) gene were selected for amplified fragment length polymorphism. The allele frequencies and polymorphism information contests (PIC) were determined in Chinese population. RESULTS: The PIC of these three new STR markers was 0.518 (PAH26), 0.413 (PAH32) and 0.362 (PAH9) respectively. There was linkage disequilibrium between PAH9 marker and PAH-STR marker (TCTA)n in the intron 3 of PAH gene. The linkage phase of the mutant genes and the markers was established using the combination of PAH-STR, PAH26 and PAH32 in 95% families. Prenatal diagnosis was performed successfully with these markers in four cases. CONCLUSION: By selecting or combining the three STR markers, the mutant genes could be distinguished from the normal allele in up to 95% of families with classical PKU.


Assuntos
Ligação Genética/genética , Repetições de Microssatélites/genética , Fenilalanina Hidroxilase/genética , Fenilcetonúrias/diagnóstico , Fenilcetonúrias/genética , Diagnóstico Pré-Natal/métodos , Alelos , Feminino , Frequência do Gene , Humanos , Desequilíbrio de Ligação , Masculino , Mutação , Reação em Cadeia da Polimerase , Gravidez
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...