Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Opt Express ; 26(11): 14800-14809, 2018 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-29877416

RESUMO

As an essential component of mode division multiplexing (MDM) system, a multimode 3dB power splitter with low loss, high power balance, and low mode crosstalk is highly desired. In this paper, we propose an ultra-broadband on-chip multimode 3dB optical power splitter using an adiabatic coupler and an S-bend based Y-branch. As an example, a splitter for the four-lowest modes of a rib waveguide on silicon on insulator (SOI) platform is designed. Simulation results show that the device exhibits < 0.12dB insertion losses, within ± 0.38dB power imbalances, and < -18.5dB mode crosstalks for the four-lowest modes within a large operating wavelength range of 165 nm (from 1400 nm to 1565 nm). The fabrication tolerance of gap size at the output end of the adiabatic coupler is also analyzed.

2.
Sci Rep ; 6: 29084, 2016 07 06.
Artigo em Inglês | MEDLINE | ID: mdl-27381281

RESUMO

We report a monolithic photonic integrated circuit (PIC) for THz communication applications. The PIC generates up to 4 optical frequency lines which can be mixed in a separate device to generate THz radiation, and each of the optical lines can be modulated individually to encode data. Physically, the PIC comprises an array of wavelength tunable distributed feedback lasers each with its own electro-absorption modulator. The lasers are designed with a long cavity to operate with a narrow linewidth, typically <4 MHz. The light from the lasers is coupled via an multimode interference (MMI) coupler into a semiconductor optical amplifier (SOA). By appropriate selection and biasing of pairs of lasers, the optical beat signal can be tuned continuously over the range from 0.254 THz to 2.723 THz. The EAM of each channel enables signal leveling balanced between the lasers and realizing data encoding, currently at data rates up to 6.5 Gb/s. The PIC is fabricated using regrowth-free techniques, making it economic for volume applications, such for use in data centers. The PIC also has a degree of redundancy, making it suitable for applications, such as inter-satellite communications, where high reliability is mandatory.

3.
Opt Lett ; 40(4): 518-21, 2015 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-25680139

RESUMO

A novel design of a two-mode de/multiplexer (DE/MUX) based on multimode interference (MMI) couplers is presented. Instead of the phase shifter (PS) in the shape of a narrow strip waveguide, which needs tight design and fabrication requirements, a tilted joint is used as a PS in the proposed device, so that the effects of the fabrication errors of the PS on the performance of the device can be reduced greatly. Simulations show that while the size of the device is as small as 39.54 µm, which is more compact than other MMI-based DE/MUX, the fabrication tolerance is larger than ±25 nm. Within the entire C-band wavelength range, the de-multiplexing crosstalk of the device is lower than -28 dB and the insertion loss is below 1.0 dB.

4.
Opt Express ; 22(2): 1806-14, 2014 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-24515189

RESUMO

Deep Ridge InGaAsP/InP Light Emitting Transistors (LET) with ~1.5 µm light emissions have been fabricated and characterized. In the deep ridge LETs, all the light emissions are from the intrinsic base area, which makes them more suitable for high speed direct modulation. A collector emitter voltage (V CE) dependent output power, which has been predicted numerically, is observed experimentally for the first time and may facilitate the use of LETs in optoelectronic integrations. A novel trend of self-heating related saturation of light power with base current is also observed, which is explained by the three port operation of the device. Further, an abnormal common-emitter current-voltage (I-V) characteristic of the deep ridge LETs is shown and is attributed to the non-radiative recombination centers at the ridge side walls. With the good quality of the quantum wells, laser operation at near room temperature is achieved in the deep ridge LET with 800 µm cavity length. With proper surface passivation techniques and device optimizations, performance of the deep ridge transistor based optoelectronic devices can be further enhanced greatly and ultra low power consumption which is highly desirable can be expected.

5.
Opt Express ; 22(24): 30368-76, 2014 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-25606965

RESUMO

We present an InP based distributed Bragg reflector (DBR) laser transmitter which has a wide wavelength tuning range and a high chip output power for wavelength division multiplexing passive optical network (WDM-PON) applications. By butt-jointing InGaAsP with 1.45 µm emission wavelength as the material of the grating section, the laser wavelength can be tuned for over 13 nm by the DBR current. Accompanied by varying the chip temperature, the tuning range can be further enlarged to 16 nm. With the help of the integrated semiconductor optical amplifier (SOA), the largest chip output power is over 30 mW. The electroabsorption modulator (EAM) is integrated into the device by the selective-area growth (SAG) technique. The 3 dB small signal modulation bandwidth of the EAM is over 13 GHz. The device has both a simple tuning scheme and a simple fabrication procedure, making it suitable for low cost massive production which is desirable for WDM-PON uses.


Assuntos
Absorção de Radiação , Eletrônica , Lasers , Fenômenos Ópticos , Óptica e Fotônica/instrumentação , Eletricidade , Análise Espectral
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...