Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Pediatr ; 12: 1400124, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38813545

RESUMO

Background: Bronchopulmonary foregut malformation (BPFM) is an uncommon condition, with few case reports documented in both national and international literature. This scarcity underscores the importance of utilizing effective imaging techniques to improve our understanding and diagnostic precision concerning this disorder. Case description: In the first case report, a neonate, born at full term and aged 15 days, presented with symptoms including dyspnea, coughing, wheezing, cyanosis, and vomiting. Initial diagnostic evaluations, which included chest radiography and upper gastrointestinal tract radiography, led to an erroneous initial diagnosis of a left-sided diaphragmatic hernia, accompanied by a suspicion of infection. In the second case report, another neonate, also born at full term but aged 5 days, exhibited symptoms such as coughing, choking, and mild vomiting. Utilizing a combination of computed tomography (CT) scans (plain, enhanced, and reconstructed), chest x-ray, and upper gastrointestinal tract radiography, the diagnosis of BPFM was accurately determined. Conclusion: Comprehensive imaging examinations play a crucial role in reducing misdiagnosis and diagnostic oversights in cases of BPFM. Given its rarity, BPFM often manifests as a sequestered lung accompanied by gastrointestinal abnormalities. Hence, the integration of CT scans with gastrointestinal tract radiography can substantially improve diagnostic precision in such cases.

2.
Chem Sci ; 14(17): 4532-4537, 2023 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-37152257

RESUMO

Here we report that a Cu2+-seamed coordination nanocapsule can serve as an efficient semiconductor photocatalyst for molecular oxygen activation. This capsule was constructed through a redox reaction facilitated self-assembly of cuprous bromide and C-pentyl-pyrogallol[4]arene. Photophysical and electrochemical studies revealed its strong visible-light absorption and photocurrent polarity switching effect. This novel molecular solid material is capable of activating molecular oxygen into reactive oxygen species under simulated sunlight irradiation. The oxygen activation process has been exploited for catalyzing aerobic oxidation reactions. The present work provides new insights into designing nonporous discrete metal-organic supramolecular assemblies for solar-driven molecular oxygen activation.

3.
ACS Appl Mater Interfaces ; 14(24): 28280-28288, 2022 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-35686366

RESUMO

Excessive phosphate poses a serious ecological and human health risk, and thereby, monitoring its trace concentration is of great significance to environmental protection and human health. In this work, a zirconium-porphyrin framework (PCN-222) with excellent stability and unique luminescence properties was designed to modify the surface of the indium tin oxide electrode, which was first used as a photoelectrochemical (PEC) probe for phosphate detection. The PCN-222-modified PEC probe demonstrated an excellent selectivity and stability and indicated a linear response to phosphate in the range of 0-106 nM with a limit of detection (LOD) as low as 1.964 nM. To the best of our knowledge, this is the phosphate probe with the lowest LOD, and this is also the first signal-on PEC probe toward phosphate based on PCN-222. More importantly, the PEC probe can be validated for the good applicability of trace phosphate detection in real water samples, indicating a good application prospect. Finally, a series of electrochemical and spectroscopic studies have proved that phosphate can bind to the indium tin oxide (ITO)/PCN-222 electrode, which shortens the distance of the space charge region while reducing the bandwidth and thus facilitates the transfer of photogenerated electrons across the energy band barrier to reduce O2 in the electrolyte, producing an enhanced cathodic photocurrent signal. The proposed strategy of the highly sensitive PEC probe provides a promising platform for more effective label-free phosphate monitoring in the environment and organisms.


Assuntos
Técnicas Biossensoriais , Porfirinas , Humanos , Técnicas Biossensoriais/métodos , Técnicas Eletroquímicas/métodos , Limite de Detecção , Fosfatos , Porfirinas/química , Água , Zircônio
4.
Dalton Trans ; 50(14): 4944-4951, 2021 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-33877192

RESUMO

Herein, a novel and fluorescent zinc-organic framework sensor [Zn3(µ3-Hbptc)2(µ2-4,4'-bpy)2(H2O)4]n·2nH2O (1) (H4bptc = 2,3,3',4'-biphenyl tetracarboxylic acid, 4,4'-bpy = 4,4'-bipyridine) is synthesized and characterized, demonstrating its excellent fluorescence performance for Cu2+ detection and the enrichment of Cu2+ in aqueous media. The fluorescence intensity of 1 can be selectively quenched by Cu2+ in a linear range of Cu2+ concentrations of 0-0.7 µM. The limit of detection (LOD) value is as low as 32.4 nM, which is superior to those of most of the fluorescent sensors based on metal-organic frameworks (MOFs). It is also far below the maximum allowable concentration of Cu2+ in drinking water as defined by the U.S. Environmental Protection Agency (EPA) and the World Health Organization (WHO), so it is employed for the detection of Cu2+ in actual water samples. More importantly, the nature of the interaction between the active coordination site (COO-) of 1 and Cu2+ determines the quenching mechanism, that is Cu2+ in the analyte is captured by MOF 1, which has been investigated by ICP, luminescence, UV-vis, XPS, and lifetime studies. Besides, the chemosensor shows regeneration performance without the loss of performance in five consecutive cycles. So MOF 1 is a simple and convenient probe used not only for the rapid detection but also for the enrichment of trace amounts of Cu2+ in aqueous media, and the application can be further extended to a variety of environmental and biological analysis processes.

5.
Angew Chem Int Ed Engl ; 60(19): 10516-10520, 2021 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-33403814

RESUMO

We report the synthesis of a novel metal-organic capsule constructed from six pyrogallol[4]arene macrocycles, which are switched together by 16 FeIII and 16 CoII ions. This supramolecular structure is the first instance of a spheroidal heterometallic nanocage assembled through a one-step metal-ligand coordination approach. This new assembly also demonstrates an important proof of concept through the formation of multiple heterometallic metal-metal interactions within the capsule framework. Photophysical and electrochemical studies of self-assembled capsule films indicate their potential as semiconductors. These materials display unexpected photoelectric conversion properties, thus representing an emergent phenomenon in discrete metal-organic supramolecular assemblies.

6.
Acta Crystallogr C Struct Chem ; 75(Pt 5): 575-583, 2019 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-31062715

RESUMO

Two three-dimensional (3D) CdII coordination polymers, namely poly[[di-µ-aqua-diaquabis{µ5-4,4',4''-[benzene-1,3,5-triyltris(oxy)]tribenzoato}tricadmium(II)] dihydrate], {[Cd3(C27H15O9)2(H2O)4]·2H2O}n, (I), and poly[[aqua{µ6-4,4',4''-[benzene-1,3,5-triyltris(oxy)]tribenzoato}(µ-formato)[µ-1,1'-(1,4-phenylene)bis(1H-imidazole)]dicadmium(II)] dihydrate], {[Cd2(C27H15O9)(C12H10N4)(HCOO)(H2O)]·2H2O}n, (II), have been hydrothermally synthesized from the reaction system containing Cd(NO3)2·4H2O and the flexible tripodal ligand 1,3,5-tris(4-carboxyphenoxy)benzene (H3tcpb) via tuning of the auxiliary ligand. Both complexes have been characterized by single-crystal X-ray diffraction analysis, elemental analysis, IR spectra, powder X-ray diffraction and thermogravimetric analysis. Complex (I) is a 3D framework constructed from trinuclear structural units and tcpb3- ligands in a µ5-coordination mode. The central CdII atom of the trinuclear unit is located on a crystallographic inversion centre and adopts an octahedral geometry. The metal atoms are bridged by four syn-syn carboxylate groups and two µ2-water molecules to form trinuclear [Cd3(COO)4(µ2-H2O)2] secondary building units (SBUs). These SBUs are incorporated into clusters by bridging carboxylate groups to produce pillars along the c axis. The one-dimensional inorganic pillars are connected by tcpb3- linkers in a µ5-coordination mode, thus forming a 3D network; its topology corresponds to the point symbol (42.62.82)(44.62)2(45.66.84)2. In contrast to (I), complex (II) is characterized by a 3D framework based on dinuclear cadmium SBUs, i.e. [Cd2(COO)3]. The two symmetry-independent CdII ions display different coordinated geometries, namely octahedral [CdN2O4] and monocapped octahedral [CdO7]. The dinuclear SBUs are incorporated into clusters by bridging formate groups to produce pillars along the c axis. These pillars are further bridged either by tcpb3- ligands into sheets or by 1,4-bis(imidazol-1-yl)benzene ligands into undulating layers, and finally these two-dimensional surfaces interweave, forming a 3D structure with the point symbol (4.62)(47.614). Compound (II) exhibits reversible I2 uptake of 56.8 mg g-1 with apparent changes in the visible colour and the UV-Vis and fluorescence spectra, and therefore may be regarded as a potential reagent for the capture and release of I2.

7.
RSC Adv ; 9(55): 32288-32295, 2019 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-35530802

RESUMO

Since Ln-CPs have excellent optical properties (higher color purity, longer fluorescence lifetime and higher quantum yield) and magnetic properties, it is of great significance to prepare dual magneto-optical materials based on Ln(iii). Herein, we obtained three versatile Ln-CPs, [Ln(HDTTA)3(CH3OH)3] n , derived from reactions of lanthanide salts (Ln = Tb 1, Dy 2, Ho 3) and a chiral and flexible ligand, namely, (+)-di-p-toluoyl-d-tartaric acid (d-H2DTTA) in a methanol-water solution, at room temperature and pressure. The structures of these compounds have been characterized by single crystal and powder X-ray diffraction, infrared spectroscopy, elemental analyses and thermogravimetric analyses. Complexes 1-3 are isomorphic, crystallizing in the chiral trigonal R3 space group with the linkage of Ln3+ ions and featuring 1D propeller chain structures. The circular dichroism spectra confirm that the complexes maintain the chirality from the ligands. Furthermore, the luminescent and magnetic properties have been investigated, relying on intrinsic properties of the lanthanide ions. The photoluminescence measurements indicate that 1, 2 and 3 show strong green, white and blue emission bands with CIE chromaticity coordinates of (0.32, 0.56), (0.29, 0.26) and (0.21, 0.12), respectively. The decay lifetime curve of 1 shows the exponential decay with long lifetime of 1.169 ms and the relative quantum yield for 1 was 19.31%. In addition, the magnetic properties of complexes 1-3 have been investigated by measuring the magnetic susceptibility in the temperature range of 2-300 K. They are all dominated by spin-orbit coupling and ligand field perturbation, and the exchange coupling between Ln3+ ions is almost negligible. Therefore, complexes 1-3 are promising chiral, optical and magnetic multifunctional materials.

8.
Ying Yong Sheng Tai Xue Bao ; 23(3): 685-93, 2012 Mar.
Artigo em Chinês | MEDLINE | ID: mdl-22720612

RESUMO

Based on the investigation and analysis of seven soil mineral substance variables, nine vegetation factors, four topographical factors, and ten soil physicochemical factors in the 200 m x 40 m dynamic monitoring plots in farmland, forest plantation, secondary forest, and primary forest in the depressions between hills in karst region, and by using traditional statistical analysis, principal component analysis (PCA), and canonical correlation analysis (CCA), this paper studied the compositional characteristics and roles of soil mineral substances as well as the coupling relationships between the mineral substances and the vegetation, topography, and other soil properties. In the depressions, soil mineral substances were mainly composed of SiO2, Al2O3, K2O, and Fe2O3, whose contents were obviously lower than the mean background values of the soils in the world and in the zonal red soils at the same latitudes. The soil CaO and MgO contents were at medium level, while the soil MnO content was very low. The composition of soil mineral substances and their variation degrees varied with the ecosystems, and the soil development degree also varied. There was a positive correlation between vegetation origin and soil origin, suggesting the potential risk of rock desertification. Due to the high landscape heterogeneity of the four ecosystems, PCA didn't show good effect in lowering dimension. In all of the four ecosystems, soil mineral substances were the main affecting factors, and had very close relationships with vegetation, topography, and other soil properties. Especially for SiO2, CaO, and MnO, they mainly affected the vegetation species diversity and the soil organic matter, total nitrogen, and total potassium. This study indicated that soil mineral substances were the one of the factors limiting the soil fertility and vegetation growth in the depressions between hills in karst region. To effectively use the soil mineral resources and rationally apply mineral nutrients would have significances in the restoration and reconstruction of karst degraded ecosystems.


Assuntos
Ecossistema , Minerais/análise , Dióxido de Silício/análise , Solo/química , Óxido de Alumínio/análise , Compostos de Cálcio/análise , China , Produtos Agrícolas/crescimento & desenvolvimento , Óxidos/análise , Compostos de Potássio/análise , Análise de Componente Principal , Árvores/crescimento & desenvolvimento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...