Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Adv Sci (Weinh) ; 10(23): e2304457, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37582689

RESUMO

Adv. Sci. 2019, 6, 1801982 DOI: 10.1002/advs.201801982 The above article, published online on May 3, 2019, in Wiley Online Library (https://doi.org/10.1002/advs.201801982), has been retracted by agreement between the authors, the journal Editor-in-Chief Kirsten Severing, and Wiley-VCH GmbH. The retraction has been agreed on following concerns raised by a third party and a subsequent investigation by the corresponding authors. Data depicted in Figure 4 and Figure 5 could not be reproduced in follow-up experiments. Therefore, the conclusions associated with those figures in the article are considered invalid. E.S.K. participated in the study design, performed measurements, analyzed the data, compiled the figures and participated in manuscript writing. A.d.C. and S.S. participated in the study design, research supervision, and manuscript writing. J.I.P. participated in the study design. M.K.L.H. participated in research supervision and manuscript revision. C.M. assisted with the experimental procedures and data collection.

2.
Mater Today Bio ; 15: 100323, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35782598

RESUMO

Understanding cells' response to the macroscopic and nanoscale properties of biomaterials requires studies in model systems with the possibility to tailor their mechanical properties and different length scales. Here, we describe an interpenetrating network (IPN) design based on a stiff PEGDA host network interlaced within a soft 4-arm PEG-Maleimide/thiol (guest) network. We quantify the nano- and bulk mechanical behavior of the IPN and the single network hydrogels by single-molecule force spectroscopy and rheological measurements. The IPN presents different mechanical cues at the molecular scale, depending on which network is linked to the probe, but the same mechanical properties at the macroscopic length scale as the individual host network. Cells attached to the interpenetrating (guest) network of the IPN or to the single network (SN) PEGDA hydrogel modified with RGD adhesive ligands showed comparable attachment and spreading areas, but cells attached to the guest network of the IPN, with lower molecular stiffness, showed a larger number and size of focal adhesion complexes and a higher concentration of the Hippo pathway effector Yes-associated protein (YAP) than cells linked to the PEGDA single network. The observations indicate that cell adhesion to the IPN hydrogel through the network with lower molecular stiffness proceeds effectively as if a higher ligand density is offered. We claim that IPNs can be used to decipher how changes in ECM design and connectivity at the local scale affect the fate of cells cultured on biomaterials.

3.
Cell Rep ; 39(2): 110658, 2022 04 12.
Artigo em Inglês | MEDLINE | ID: mdl-35417696

RESUMO

Blood vessel morphogenesis is driven by coordinated endothelial cell behaviors. Active remodeling of cell-cell junctions promotes cellular plasticity while preserving vascular integrity. Here, we analyze the dynamics of endothelial adherens junctions during lumen formation in angiogenic sprouts in vivo. Live imaging in zebrafish reveals that lumen expansion is accompanied by the formation of transient finger-shaped junctions. Junctional fingers are positively regulated by blood pressure, whereas flow inhibition prevents their formation. Using fluorescent reporters, we show that junctional fingers contain the mechanotransduction protein vinculin. Furthermore, genetic deletion of vinculin prevents finger formation, a junctional defect that could be rescued by transient endothelial expression of vinculin. Our findings suggest a mechanism whereby lumen expansion leads to an increase in junctional tension, triggering recruitment of vinculin and formation of junctional fingers. We propose that endothelial cells employ force-dependent junctional remodeling to counteract external forces in order to maintain vascular integrity during sprouting angiogenesis.


Assuntos
Células Endoteliais , Mecanotransdução Celular , Vinculina , Junções Aderentes/metabolismo , Animais , Caderinas/metabolismo , Células Endoteliais/metabolismo , Junções Intercelulares/metabolismo , Neovascularização Fisiológica , Vinculina/metabolismo , Peixe-Zebra/metabolismo , Proteínas de Peixe-Zebra/metabolismo
4.
Adv Ther (Weinh) ; 5(3): 2100222, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35310821

RESUMO

Despite the progress in surgical techniques and antibiotic prophylaxis, opportunistic wound infections with Bacillus cereus remain a public health problem. Secreted toxins are one of the main factors contributing to B. cereus pathogenicity. A promising strategy to treat such infections is to target these toxins and not the bacteria. Although the exoenzymes produced by B. cereus are thoroughly investigated, little is known about the role of B. cereus collagenases in wound infections. In this report, the collagenolytic activity of secreted collagenases (Col) is characterized in the B. cereus culture supernatant (csn) and its isolated recombinantly produced ColQ1 is characterized. The data reveals that ColQ1 causes damage on dermal collagen (COL). This results in gaps in the tissue, which might facilitate the spread of bacteria. The importance of B. cereus collagenases is also demonstrated in disease promotion using two inhibitors. Compound 2 shows high efficacy in peptidolytic, gelatinolytic, and COL degradation assays. It also preserves the fibrillar COLs in skin tissue challenged with ColQ1, as well as the viability of skin cells treated with B. cereus csn. A Galleria mellonella model highlights the significance of collagenase inhibition in vivo.

5.
Nat Commun ; 12(1): 3580, 2021 06 11.
Artigo em Inglês | MEDLINE | ID: mdl-34117256

RESUMO

Progress in our understanding of mechanotransduction events requires noninvasive methods for the manipulation of forces at molecular scale in physiological environments. Inspired by cellular mechanisms for force application (i.e. motor proteins pulling on cytoskeletal fibers), we present a unique molecular machine that can apply forces at cell-matrix and cell-cell junctions using light as an energy source. The key actuator is a light-driven rotatory molecular motor linked to polymer chains, which is intercalated between a membrane receptor and an engineered biointerface. The light-driven actuation of the molecular motor is converted in mechanical twisting of the entangled polymer chains, which will in turn effectively "pull" on engaged cell membrane receptors (e.g., integrins, T cell receptors) within the illuminated area. Applied forces have physiologically-relevant magnitude and occur at time scales within the relevant ranges for mechanotransduction at cell-friendly exposure conditions, as demonstrated in force-dependent focal adhesion maturation and T cell activation experiments. Our results reveal the potential of nanomotors for the manipulation of living cells at the molecular scale and demonstrate a functionality which at the moment cannot be achieved by other technologies for force application.


Assuntos
Fenômenos Mecânicos , Mecanotransdução Celular/fisiologia , Receptores de Superfície Celular/fisiologia , Cálcio , Linhagem Celular , Fibroblastos , Adesões Focais , Humanos , Integrinas , Ligantes , Proteínas Motores Moleculares
6.
PLoS One ; 15(6): e0234430, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32511274

RESUMO

Excess presence of the human epidermal growth factor receptor 2 (HER2) as well as of the focal adhesion protein complexes are associated with increased proliferation, migratory, and invasive behavior of cancer cells. A cross-regulation between HER2 and integrin signaling pathways has been found, but the exact mechanism remains elusive. Here, we investigated whether HER2 colocalizes with focal adhesion complexes on breast cancer cells overexpressing HER2. For this purpose, vinculin or talin green fluorescent protein (GFP) fusion proteins, both key constituents of focal adhesions, were expressed in breast cancer cells. HER2 was either extracellularly or intracellularly labeled with fluorescent quantum dots nanoparticles (QDs). The cell-substrate interface was analyzed at the location of the focal adhesions by means of total internal reflection fluorescent microscopy or correlative fluorescence- and scanning transmission electron microscopy. Expression of HER2 at the cell-substrate interface was only observed upon intracellular labeling, and was heterogeneous with both HER2-enriched and -low regions. In contrast to an expected enrichment of HER2 at focal adhesions, an anti-correlated expression pattern was observed for talin and HER2. Our findings suggest a spatial anti-correlation between HER2 and focal adhesion complexes for adherent cells.


Assuntos
Membrana Celular/metabolismo , Adesões Focais/metabolismo , Receptor ErbB-2/metabolismo , Análise Espacial , Adesão Celular , Linhagem Celular Tumoral , Membrana Celular/ultraestrutura , Adesões Focais/ultraestrutura , Genes Reporter , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Humanos , Microscopia Eletrônica de Transmissão e Varredura , Microscopia de Fluorescência , Receptor ErbB-2/análise , Proteínas Recombinantes de Fusão/análise , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Talina/análise , Talina/genética , Talina/metabolismo , Vinculina/análise , Vinculina/genética , Vinculina/metabolismo
7.
Adv Sci (Weinh) ; 6(9): 1801982, 2019 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-31065523

RESUMO

Collagen is the most abundant structural protein in mammals and is crucial for the mechanical integrity of tissues. Hsp47, an endoplasmic reticulum resident collagen-specific chaperone, is involved in collagen biosynthesis and plays a fundamental role in the folding, stability, and intracellular transport of procollagen triple helices. This work reports on a photoactivatable derivative of Hsp47 that allows regulation of collagen biosynthesis within mammalian cells using light. Photoactivatable Hsp47 contains a non-natural light-responsive tyrosine (o-nitro benzyl tyrosine (ONBY)) at Tyr383 position of the protein sequence. This mutation renders Hsp47 inactive toward collagen binding. The inactive, photoactivatable protein is easily uptaken by cells within a few minutes of incubation, and accumulated at the endoplasmic reticulum via retrograde KDEL receptor-mediated uptake. Upon light exposure, the photoactivatable Hsp47 turns into functional Hsp47 in situ. The increased intracellular concentration of Hsp47 results in stimulated secretion of collagen. The ability to promote collagen synthesis on demand, with spatiotemporal resolution, and in diseased state cells is demonstrated in vitro. It is envisioned that photoactivatable Hsp47 allows unprecedented fundamental studies of collagen biosynthesis, matrix biology, and inspires new therapeutic concepts in biomedicine and tissue regeneration.

8.
PLoS One ; 12(8): e0182278, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28767718

RESUMO

The formation of multicellular tissues during development is governed by mechanical forces that drive cell shape and tissue architecture. Protein complexes at sites of adhesion to the extracellular matrix (ECM) and cell neighbors, not only transmit these mechanical forces, but also allow cells to respond to changes in force by inducing biochemical feedback pathways. Such force-induced signaling processes are termed mechanotransduction. Vinculin is a central protein in mechanotransduction that in both integrin-mediated cell-ECM and cadherin-mediated cell-cell adhesions mediates force-induced cytoskeletal remodeling and adhesion strengthening. Vinculin was found to be important for the integrity and remodeling of epithelial tissues in cell culture models and could therefore be expected to be of broad importance in epithelial morphogenesis in vivo. Besides a function in mouse heart development, however, the importance of vinculin in morphogenesis of other vertebrate tissues has remained unclear. To investigate this further, we knocked out vinculin functioning in zebrafish, which contain two fully functional isoforms designated as vinculin A and vinculin B that both show high sequence conservation with higher vertebrates. Using TALEN and CRISPR-Cas gene editing technology we generated vinculin-deficient zebrafish. While single vinculin A mutants are viable and able to reproduce, additional loss of zygotic vinculin B was lethal after embryonic stages. Remarkably, vinculin-deficient embryos do not show major developmental defects, apart from mild pericardial edemas. These results lead to the conclusion that vinculin is not of broad importance for the development and morphogenesis of zebrafish tissues.


Assuntos
Vinculina/genética , Vinculina/metabolismo , Peixe-Zebra/crescimento & desenvolvimento , Animais , Adesão Celular , Cães , Desenvolvimento Embrionário , Matriz Extracelular/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Técnicas de Inativação de Genes , Células HEK293 , Humanos , Células Madin Darby de Rim Canino , Mecanotransdução Celular , Peixe-Zebra/genética , Peixe-Zebra/metabolismo , Proteínas de Peixe-Zebra/genética , Proteínas de Peixe-Zebra/metabolismo
9.
Nat Cell Biol ; 19(1): 14-16, 2016 Dec 23.
Artigo em Inglês | MEDLINE | ID: mdl-28008179

RESUMO

Cadherin adhesion complexes have recently emerged as sensors of tissue tension that regulate key developmental processes. Super-resolution microscopy experiments now unravel the spatial organization of the interface between cadherins and the actin cytoskeleton and reveal how vinculin, a central component in cadherin mechanotransduction, is regulated by mechanical and biochemical signals.


Assuntos
Actinas/metabolismo , Caderinas/metabolismo , Citoesqueleto de Actina/metabolismo , Actomiosina/metabolismo , Animais , Adesão Celular , Camundongos , Modelos Biológicos
10.
Biol Open ; 5(10): 1461-1472, 2016 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-27612508

RESUMO

Cadherin complexes mediate cell-cell adhesion and are crucial for embryonic development. Besides their structural function, cadherin complexes also transduce tension across the junction-actomyosin axis into proportional biochemical responses. Central to this mechanotransduction is the stretching of the cadherin-F-actin-linker α-catenin, which opens its central domain for binding to effectors such as vinculin. Mechanical unfolding of α-catenin leads to force-dependent reinforcement of cadherin-based junctions as studied in cell culture. The importance of cadherin mechanotransduction for embryonic development has not been studied yet. Here we used TALEN-mediated gene disruption to perturb endogenous αE-catenin in zebrafish development. Zygotic α-catenin mutants fail to maintain their epithelial barrier, resulting in tissue rupturing. We then specifically disrupted mechanotransduction, while maintaining cadherin adhesion, by expressing an αE-catenin construct in which the mechanosensitive domain was perturbed. Expression of either wild-type or mechano-defective α-catenin fully rescues barrier function in α-catenin mutants; however, expression of mechano-defective α-catenin also induces convergence and extension defects. Specifically, the polarization of cadherin-dependent, lamellipodia-driven cell migration of the lateral mesoderm was lost. These results indicate that cadherin mechanotransduction is crucial for proper zebrafish morphogenesis, and uncover one of the essential processes affected by its perturbation.

11.
Trends Cell Biol ; 26(8): 612-623, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27036655

RESUMO

The molecular mechanisms by which physical forces control tissue development are beginning to be elucidated. Sites of adhesion between both cells and the extracellular environment [extracellular matrix (ECM) or neighboring cells] contain protein complexes capable of sensing fluctuations in tensile forces. Tension-dependent changes in the dynamics and composition of these complexes mark the transformation of physical input into biochemical signals that defines mechanotransduction. It is becoming apparent that, although the core constituents of these different adhesions are distinct, principles and proteins involved in mechanotransduction are conserved. Here, we discuss the current knowledge of overlapping and distinct aspects of mechanotransduction between integrin and cadherin adhesion complexes.


Assuntos
Mecanotransdução Celular , Animais , Caderinas/metabolismo , Adesão Celular , Adesões Focais/metabolismo , Humanos , Integrinas/metabolismo , Modelos Biológicos
12.
Science ; 344(6180): 208-11, 2014 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-24723613

RESUMO

Genome-wide characterization of the in vivo cellular response to perturbation is fundamental to understanding how cells survive stress. Identifying the proteins and pathways perturbed by small molecules affects biology and medicine by revealing the mechanisms of drug action. We used a yeast chemogenomics platform that quantifies the requirement for each gene for resistance to a compound in vivo to profile 3250 small molecules in a systematic and unbiased manner. We identified 317 compounds that specifically perturb the function of 121 genes and characterized the mechanism of specific compounds. Global analysis revealed that the cellular response to small molecules is limited and described by a network of 45 major chemogenomic signatures. Our results provide a resource for the discovery of functional interactions among genes, chemicals, and biological processes.


Assuntos
Células/efeitos dos fármacos , Avaliação Pré-Clínica de Medicamentos/métodos , Resistência a Medicamentos/genética , Redes Reguladoras de Genes , Estudo de Associação Genômica Ampla/métodos , Bibliotecas de Moléculas Pequenas/farmacologia , Linhagem Celular Tumoral , Haploinsuficiência , Humanos , Farmacogenética , Saccharomyces cerevisiae/efeitos dos fármacos , Saccharomyces cerevisiae/genética
13.
PLoS One ; 7(3): e34192, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22457824

RESUMO

The chemokine receptor CXCR7 binds CXCL11 and CXCL12 with high affinity, chemokines that were previously thought to bind exclusively to CXCR4 and CXCR3, respectively. Expression of CXCR7 has been associated with cardiac development as well as with tumor growth and progression. Despite having all the canonical features of G protein-coupled receptors (GPCRs), the signalling pathways following CXCR7 activation remain controversial, since unlike typical chemokine receptors, CXCR7 fails to activate Gα(i)-proteins. CXCR7 has recently been shown to interact with ß-arrestins and such interaction has been suggested to be responsible for G protein-independent signals through ERK-1/2 phosphorylation. Signal transduction by CXCR7 is controlled at the membrane by the process of GPCR trafficking. In the present study we investigated the regulatory processes triggered by CXCR7 activation as well as the molecular interactions that participate in such processes. We show that, CXCR7 internalizes and recycles back to the cell surface after agonist exposure, and that internalization is not only ß-arrestin-mediated but also dependent on the Serine/Threonine residues at the C-terminus of the receptor. Furthermore we describe, for the first time, the constitutive ubiquitination of CXCR7. Such ubiquitination is a key modification responsible for the correct trafficking of CXCR7 from and to the plasma membrane. Moreover, we found that CXCR7 is reversibly de-ubiquitinated upon treatment with CXCL12. Finally, we have also identified the Lysine residues at the C-terminus of CXCR7 to be essential for receptor cell surface delivery. Together these data demonstrate the differential regulation of CXCR7 compared to the related CXCR3 and CXCR4 receptors, and highlight the importance of understanding the molecular determinants responsible for this process.


Assuntos
Receptores CXCR/metabolismo , Ubiquitinação , Linhagem Celular , Humanos , Transporte Proteico
14.
Chem Biol ; 18(10): 1273-83, 2011 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-22035796

RESUMO

Preselection of compounds that are more likely to induce a phenotype can increase the efficiency and reduce the costs for model organism screening. To identify such molecules, we screened ~81,000 compounds in Saccharomyces cerevisiae and identified ~7500 that inhibit cell growth. Screening these growth-inhibitory molecules across a diverse panel of model organisms resulted in an increased phenotypic hit-rate. These data were used to build a model to predict compounds that inhibit yeast growth. Empirical and in silico application of the model enriched the discovery of bioactive compounds in diverse model organisms. To demonstrate the potential of these molecules as lead chemical probes, we used chemogenomic profiling in yeast and identified specific inhibitors of lanosterol synthase and of stearoyl-CoA 9-desaturase. As community resources, the ~7500 growth-inhibitory molecules have been made commercially available and the computational model and filter used are provided.


Assuntos
Inibidores Enzimáticos/química , Saccharomyces cerevisiae/crescimento & desenvolvimento , Saccharomyces cerevisiae/metabolismo , Bibliotecas de Moléculas Pequenas , Bacillus subtilis/efeitos dos fármacos , Bacillus subtilis/crescimento & desenvolvimento , Teorema de Bayes , Benzofuranos/química , Benzofuranos/metabolismo , Benzofuranos/farmacologia , Candida albicans/efeitos dos fármacos , Candida albicans/crescimento & desenvolvimento , Simulação por Computador , Inibidores Enzimáticos/farmacologia , Escherichia coli/efeitos dos fármacos , Escherichia coli/crescimento & desenvolvimento , Ácidos Graxos Dessaturases/antagonistas & inibidores , Ácidos Graxos Dessaturases/metabolismo , Células HeLa , Humanos , Transferases Intramoleculares/antagonistas & inibidores , Transferases Intramoleculares/metabolismo , Modelos Biológicos , Fenótipo , Piperazinas/química , Piperazinas/metabolismo , Piperazinas/farmacologia , Saccharomyces cerevisiae/química , Estearoil-CoA Dessaturase
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...