Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Imeta ; 2(2): e90, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-38868421

RESUMO

In this longitudinal cohort study, our results demonstrated that there are rhythmic changes in gut microbial network signatures in early life, and healthy infants adopt more complex and stable network structure in their gut microbiota than that of the infants with eczema.

2.
Fish Shellfish Immunol ; 117: 95-103, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34284110

RESUMO

The toxic effect of dietary histamine on the intestine of aquatic animals has been demonstrated, but reports on the morphological observation of the intestine are limited. Thus, a feeding trial was conducted to determine the effect of dietary histamine on intestinal histology, inflammatory status and gut microbiota of yellow catfish (Pelteobagrus fulvidraco). Here, we showed that histamine-rich diets caused severe abnormality and damage to the intestine, including a decreased villi length and reduced villi number. In addition, the quantitative real-time PCR (qRT-PCR) demonstrates that histamine-rich diets increased the expression of pro-inflammatory genes (Tnfα, Il1ß, and Il8) and decreased the expression of an anti-inflammatory gene (Il10). Furthermore, the alpha-diversity (observed OTUs, Chao1, Shannon and Simpson) and beta-diversity (non-metric multidimensional scaling, with the stress value of 0.17) demonstrated that histamine-rich diets caused alterations in gut microbiota composition and diversity. Co-occurrence networks analysis of the gut microbiota community showed that the histamine influenced the number and the relationship between bacteria species in the phyla of Acidobacteria, Proteobacteria, and Bacteroidetes, which caused the instability of the intestinal microbiota community. Additionally, random forest selected six bacterial species as the biomarkers to separate the three groups, which are Lachnospiraceae Blautia (V520), Bacteroidales S24.7 (V235), Chloroplast Streptophyta (V368), Actinomycetales Streptomycetaceae (V152), Clostridia Clostridiales (V491) and Paraprevotellaceae Prevotella (V245). Finally, Pearson correlation analysis demonstrated that V520, V235, and V491 were negatively correlated with pro-inflammatory factors (Tnfα, Il1ß, and Il8) and positively correlated with an anti-inflammatory factor (Il10), which indicated that V520, V235, and V491 might be anti-inflammatory. These findings improved our understanding of the toxic effect of dietary histamine to intestinal histological damage, the induction of mucosa inflammatory status, and the alteration of gut microbiota.


Assuntos
Peixes-Gato , Microbioma Gastrointestinal/efeitos dos fármacos , Histamina/toxicidade , Intestinos/efeitos dos fármacos , Animais , Peixes-Gato/genética , Peixes-Gato/imunologia , Peixes-Gato/microbiologia , Citocinas/genética , Dieta , Doenças dos Peixes/induzido quimicamente , Doenças dos Peixes/genética , Doenças dos Peixes/microbiologia , Doenças dos Peixes/patologia , Proteínas de Peixes/genética , Regulação da Expressão Gênica/efeitos dos fármacos , Inflamação/induzido quimicamente , Inflamação/genética , Inflamação/microbiologia , Inflamação/patologia , Intestinos/imunologia , Intestinos/patologia , Masculino
3.
J Cachexia Sarcopenia Muscle ; 12(3): 746-768, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33955709

RESUMO

BACKGROUND: Satellite cells (SCs) are critical to skeletal muscle regeneration. Inactivation of SCs is linked to skeletal muscle loss. Transferrin receptor 1 (Tfr1) is associated with muscular dysfunction as muscle-specific deletion of Tfr1 results in growth retardation, metabolic disorder, and lethality, shedding light on the importance of Tfr1 in muscle physiology. However, its physiological function regarding skeletal muscle ageing and regeneration remains unexplored. METHODS: RNA sequencing is applied to skeletal muscles of different ages to identify Tfr1 associated to skeletal muscle ageing. Mice with conditional SC ablation of Tfr1 were generated. Between Tfr1SC/WT and Tfr1SC/KO (n = 6-8 mice per group), cardiotoxin was intramuscularly injected, and transverse abdominal muscle was dissected, weighted, and cryosectioned, followed by immunostaining, haematoxylin and eosin staining, and Masson staining. These phenotypical analyses were followed with functional analysis such as flow cytometry, tread mill, Prussian blue staining, and transmission electron microscopy to identify pathological pathways that contribute to regeneration defects. RESULTS: By comparing gene expression between young (2 weeks old, n = 3) and aged (80 weeks old, n = 3) mice among four types of muscles, we identified that Tfr1 expression is declined in muscles of aged mice (~80% reduction, P < 0.005), so as to its protein level in SCs of aged mice. From in vivo and ex vivo experiments, Tfr1 deletion in SCs results in an irreversible depletion of SCs (~60% reduction, P < 0.005) and cell-autonomous defect in SC proliferation and differentiation, leading to skeletal muscle regeneration impairment, followed by labile iron accumulation, lipogenesis, and decreased Gpx4 and Nrf2 protein levels leading to reactive oxygen species scavenger defects. These abnormal phenomena including iron accumulation, activation of unsaturated fatty acid biosynthesis, and lipid peroxidation are orchestrated with the occurrence of ferroptosis in skeletal muscle. Ferroptosis further exacerbates SC proliferation and skeletal muscle regeneration. Ferrostatin-1, a ferroptosis inhibitor, could not rescue ferroptosis. However, intramuscular administration of lentivirus-expressing Tfr1 could partially reduce labile iron accumulation, decrease lipogenesis, and promote skeletal muscle regeneration. Most importantly, declined Tfr1 but increased Slc39a14 protein level on cellular membrane contributes to labile iron accumulation in skeletal muscle of aged rodents (~80 weeks old), leading to activation of ferroptosis in aged skeletal muscle. This is inhibited by ferrostatin-1 to improve running time (P = 0.0257) and distance (P = 0.0248). CONCLUSIONS: Satellite cell-specific deletion of Tfr1 impairs skeletal muscle regeneration with activation of ferroptosis. This phenomenon is recapitulated in skeletal muscle of aged rodents and human sarcopenia. Our study provides mechanistic information for developing novel therapeutic strategies against muscular ageing and diseases.


Assuntos
Proteínas de Transporte de Cátions , Ferroptose , Animais , Camundongos , Músculo Esquelético , Mioblastos , Receptores da Transferrina/genética , Regeneração
4.
Adv Sci (Weinh) ; 7(12): 1903366, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32596110

RESUMO

Iron homeostasis is essential for maintaining cellular function in a wide range of cell types. However, whether iron affects the thermogenic properties of adipocytes is currently unknown. Using integrative analyses of multi-omics data, transferrin receptor 1 (Tfr1) is identified as a candidate for regulating thermogenesis in beige adipocytes. Furthermore, it is shown that mice lacking Tfr1 specifically in adipocytes have impaired thermogenesis, increased insulin resistance, and low-grade inflammation accompanied by iron deficiency and mitochondrial dysfunction. Mechanistically, the cold treatment in beige adipocytes selectively stabilizes hypoxia-inducible factor 1-alpha (HIF1α), upregulating the Tfr1 gene, and thermogenic adipocyte-specific Hif1α deletion reduces thermogenic gene expression in beige fat without altering core body temperature. Notably, Tfr1 deficiency in interscapular brown adipose tissue (iBAT) leads to the transdifferentiation of brown preadipocytes into white adipocytes and muscle cells; in contrast, long-term exposure to a low-iron diet fails to phenocopy the transdifferentiation effect found in Tfr1-deficient mice. Moreover, mice lacking transmembrane serine protease 6 (Tmprss6) develop iron deficiency in both inguinal white adipose tissue (iWAT) and iBAT, and have impaired cold-induced beige adipocyte formation and brown fat thermogenesis. Taken together, these findings indicate that Tfr1 plays an essential role in thermogenic adipocytes via both iron-dependent and iron-independent mechanisms.

5.
FEMS Microbiol Lett ; 367(13)2020 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-32407465

RESUMO

Ulcerative colitis (UC) is a gastrointestinal disease. The link between gut microbiota and the inflammatory response in the gut has been recently established. Restoration of gut microbiota suppresses inflammatory signaling. Kuijieling (KJL) decoction, an experimental Chinese medicine formula could ameliorate the symptom of colitis. However, the involvement of gut microbiota in its curative effect remains known. Here, we would like to assess the therapeutic effect of KJL in DSS-induced UC model. Mouse feces were collected, followed by 16S rRNA sequencing. Kuijieling decoction improved gut microbial homeostasis and suppressed inflammation in the UC model. A 5-fold cross-validation and random forest analysis identified seven signature bacterial taxa representing the DSS-mediated pathogenic condition and recovery stage upon KJL decoction treatment. Overall, the findings support the notion of KJL decoction-mediated restoration of gut microbiota as a critical step of inducing remission and alleviating UC symptoms. In the present investigation, we aimed to address the question of whether KJL decoction alleviates the UC symptoms by manipulating the gut microbial structure and function.


Assuntos
Bactérias/efeitos dos fármacos , Biodiversidade , Colite Ulcerativa/tratamento farmacológico , Medicamentos de Ervas Chinesas/farmacologia , Medicamentos de Ervas Chinesas/uso terapêutico , Microbioma Gastrointestinal/efeitos dos fármacos , Animais , Bactérias/genética , Colite Ulcerativa/induzido quimicamente , Fezes/microbiologia , Regulação da Expressão Gênica/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos C57BL , RNA Ribossômico 16S/genética
6.
FASEB J ; 34(2): 3006-3020, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31912587

RESUMO

Iron is an essential trace mineral required for growth, metabolism, and immune response. Dysregulation of iron homeostasis is linked with the development and progression of various diseases. Iron accumulation is associated with inflammatory diseases and cancer, while iron deficiency leads to the growth retardation. Several studies have suggested that iron imbalance results in alteration of gut microbiota, leading to the disruption of microbial diversity, the increase of pathogen abundance, and the induction of intestinal inflammation. However, in screening studies done in the past decades, the association between the iron availability and gut microbiota has not been systemically explored. Furthermore, a noninvasive and convenient approach to determine the iron levels in tissues is lacking. In the present study, a murine model for iron dysregulation was established. 16S rRNA amplicon sequencing and bioinformatic algorithms were used to identify the key taxa. Using the key taxa identified and machine learning models, we established an easily accessible prediction model, which could accurately distinguish between iron-deprived or iron-fortified condition. This prediction model could precisely predict the iron level of the intestinal epithelial cells and the liver and could be used for early diagnosis of iron dysbiosis-related diseases, in a noninvasive manner, in the future.


Assuntos
Células Epiteliais/metabolismo , Fezes/microbiologia , Microbioma Gastrointestinal , Ferro/metabolismo , Fígado/metabolismo , Animais , Biomarcadores/metabolismo , Camundongos , RNA Bacteriano/metabolismo , RNA Ribossômico 16S/metabolismo
7.
Biochem Biophys Res Commun ; 509(1): 125-132, 2019 01 29.
Artigo em Inglês | MEDLINE | ID: mdl-30580997

RESUMO

Bone morphogenetic protein and activin membrane-bound inhibitor (BAMBI) gene encodes a transmembrane protein and is involved in multiple physiological and pathological processes, such as inflammatory response, tumor development and progression, cell proliferation and differentiation. A previous study suggested that BAMBI may interact with the Wnt/ß-catenin signaling pathway via promoting ß-catenin nuclear translocation associated with C2C12 myogenic myoblast differentiation. However, its biological function in skeletal muscle still remains unknown and requires further characterization. The present work sought to investigate its biological function in skeletal muscle, especially the physiological roles of BAMBI during skeletal muscle growth and regeneration. Our current work suggests that BAMBI protein is highly expressed in skeletal muscle and is only detected in cytosolic fraction in the resting muscle. Moreover, BAMBI protein is co-localized in fast-twitch (glycolytic) fibers, but not in slow-twitch (oxidative) fibers. Comparing with the cytosolic trapping in resting muscle, BAMBI protein is enriched on cellular membrane during the muscle growth and regeneration, suggesting that BAMBI-mediated a significant signaling pathway may be an essential part of muscle growth and regeneration.


Assuntos
Proteínas de Membrana/metabolismo , Desenvolvimento Muscular , Músculo Esquelético/fisiologia , Regeneração , Animais , Membrana Celular/metabolismo , Citosol/metabolismo , Masculino , Proteínas de Membrana/análise , Camundongos Endogâmicos C57BL , Músculo Esquelético/crescimento & desenvolvimento , Músculo Esquelético/lesões , Transporte Proteico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...