Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Appl Mater Interfaces ; 16(21): 27541-27549, 2024 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-38758664

RESUMO

Thermoelectric cooling devices utilizing Bi2Te3-based alloys have seen increased utilization in recent years. However, their thermoelectric performance remains inadequate within the operational temperature range (≤400 K), with limited research addressing this issue. In this study, we successfully modulated the carrier concentration of the sample through Te content reduction, consequently lowering the peak temperature of the zT value from 400 to 300 K. This led to a substantial enhancement in thermoelectric performance at room temperature (≤400 K). Furthermore, by doping with La, the electrical transport properties have been further optimized, and the lattice thermal conductivity has been effectively reduced at the same time; the average zT value was ultimately elevated from 0.69 to 0.9 within the temperature range of 300-400 K. These findings hold significant promise for enhancing the efficacy of existing thermoelectric cooling devices based on Bi2Te3-based alloys.

2.
Nanomaterials (Basel) ; 12(10)2022 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-35630913

RESUMO

The past decades have witnessed surging demand for wearable electronics, for which thermoelectrics (TEs) are considered a promising self-charging technology, as they are capable of converting skin heat into electricity directly. Bi2Te3 is the most-used TE material at room temperature, due to a high zT of ~1. However, it is different to integrate Bi2Te3 for wearable TEs owing to its intrinsic rigidity. Bi2Te3 could be flexible when made thin enough, but this implies a small electrical and thermal load, thus severely restricting the power output. Herein, we developed a Bi2Te3/nickel foam (NiFoam) composite film through solvothermal deposition of Bi2Te3 nanoplates into porous NiFoam. Due to the mesh structure and ductility of Ni Foam, the film, with a thickness of 160 µm, exhibited a high figure of merit for flexibility, 0.016, connoting higher output. Moreover, the film also revealed a high tensile strength of 12.7 ± 0.04 MPa and a maximum elongation rate of 28.8%. In addition, due to the film's high electrical conductivity and enhanced Seebeck coefficient, an outstanding power factor of 850 µW m-1 K-2 was achieved, which is among the highest ever reported. A module fabricated with five such n-type legs integrated electrically in series and thermally in parallel showed an output power of 22.8 nW at a temperature gap of 30 K. This work offered a cost-effective avenue for making highly flexible TE films for power supply of wearable electronics by intercalating TE nanoplates into porous and meshed-structure materials.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...