Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Genet ; 15: 1401544, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38948360

RESUMO

Introduction: Synergistic medication, a crucial therapeutic strategy in cancer treatment, involves combining multiple drugs to enhance therapeutic effectiveness and mitigate side effects. Current research predominantly employs deep learning models for extracting features from cell line and cancer drug structure data. However, these methods often overlook the intricate nonlinear relationships within the data, neglecting the distribution characteristics and weighted probability densities of gene expression data in multi-dimensional space. It also fails to fully exploit the structural information of cancer drugs and the potential interactions between drug molecules. Methods: To overcome these challenges, we introduce an innovative end-to-end learning model specifically tailored for cancer drugs, named Dual Kernel Density and Positional Encoding (DKPE) for Graph Synergy Representation Network (DKPEGraphSYN). This model is engineered to refine the prediction of drug combination synergy effects in cancer. DKPE-GraphSYN utilizes Dual Kernel Density Estimation and Positional Encoding techniques to effectively capture the weighted probability density and spatial distribution information of gene expression, while exploring the interactions and potential relationships between cancer drug molecules via a graph neural network. Results: Experimental results show that our prediction model achieves significant performance enhancements in forecasting drug synergy effects on a comprehensive cancer drug and cell line synergy dataset, achieving an AUPR of 0.969 and an AUC of 0.976. Discussion: These results confirm our model's superior accuracy in predicting cancer drug combinations, providing a supportive method for clinical medication strategy in cancer.

2.
BMC Bioinformatics ; 25(1): 140, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38561679

RESUMO

Drug combination therapy is generally more effective than monotherapy in the field of cancer treatment. However, screening for effective synergistic combinations from a wide range of drug combinations is particularly important given the increase in the number of available drug classes and potential drug-drug interactions. Existing methods for predicting the synergistic effects of drug combinations primarily focus on extracting structural features of drug molecules and cell lines, but neglect the interaction mechanisms between cell lines and drug combinations. Consequently, there is a deficiency in comprehensive understanding of the synergistic effects of drug combinations. To address this issue, we propose a drug combination synergy prediction model based on multi-source feature interaction learning, named MFSynDCP, aiming to predict the synergistic effects of anti-tumor drug combinations. This model includes a graph aggregation module with an adaptive attention mechanism for learning drug interactions and a multi-source feature interaction learning controller for managing information transfer between different data sources, accommodating both drug and cell line features. Comparative studies with benchmark datasets demonstrate MFSynDCP's superiority over existing methods. Additionally, its adaptive attention mechanism graph aggregation module identifies drug chemical substructures crucial to the synergy mechanism. Overall, MFSynDCP is a robust tool for predicting synergistic drug combinations. The source code is available from GitHub at https://github.com/kkioplkg/MFSynDCP .


Assuntos
Benchmarking , Treinamento por Simulação , Combinação de Medicamentos , Quimioterapia Combinada , Linhagem Celular
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...