Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Phys Chem Chem Phys ; 21(44): 24620-24628, 2019 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-31670329

RESUMO

The Janus structure, by combining properties of different transition metal dichalcogenide (TMD) monolayers in a single polar material, has attracted increasing research interest because of its particular structure and potential application in electronics, optoelectronics and piezoelectronics. In this work, Janus SnSSe monolayer is predicted by means of first-principles calculations, and it exhibits dynamic and mechanical stability. By using the generalized gradient approximation (GGA) and spin-orbit coupling (SOC), the Janus SnSSe monolayer is found to be an indirect band-gap semiconductor, whose gap can easily be tuned by strain. High carrier mobilities are obtained for SnSSe monolayer, and the hole mobility is higher than the electron mobility. For SnSSe monolayer, a uniaxial strain in the basal plane can induce both strong in-plane and much weaker out-of-plane piezoelectric polarizations, which reveals the potential as a piezoelectric two-dimensional (2D) material. High absorption coefficients in the visible light region are observed, suggesting a potential photocatalytic application. Calculated results show that SnSSe monolayer has a very high power factor, making it a promising candidate for thermoelectric applications. Our works reveal that the Janus SnSSe structure can be fabricated with unique electronic, optical, piezoelectric and transport properties, and can motivate related experimental works.

2.
Pestic Biochem Physiol ; 147: 75-82, 2018 May.
Artigo em Inglês | MEDLINE | ID: mdl-29933996

RESUMO

In our previous study on natural products with fungicidal activity, pseudolaric acid B (PAB) isolated from Pseudolarix amabilis was examined to inhibit significantly mango anthracnose (Colletotrichum gloeosporioides) in vivo and in vitro. In the current study, sensitivity of 17 plant pathogenic fungi to PAB was determined. Mycelial growth rate results showed that PAB possessed strong antifungal activities to eleven fungi with median effective concentration (EC50) values ranging from 0.087 to 1.927µg/mL. EC50 of PAB against spore germination was greater than that of mycelium growth inhibition, which suggest that PAB could execute antifungal activity through mycelial growth inhibition. Further action mechanism of PAB against C. gloeosporioides was investigated, in which PAB treatment inhibited mycelia dry weight, decreased the mycelia reducing sugar and soluble protein. Furthermore, PAB induced an increase in membrane permeability, inhibited the biosynthesis of ergosterol, caused the extreme alteration in ultrastructure as indicated by the thickened cell wall and increased vesicles. These results will increase our understanding of action mechanism of PAB against plant pathogenic fungi.


Assuntos
Antifúngicos/farmacologia , Colletotrichum/efeitos dos fármacos , Diterpenos/farmacologia , Doenças das Plantas/prevenção & controle , Permeabilidade da Membrana Celular/efeitos dos fármacos , Colletotrichum/crescimento & desenvolvimento , Colletotrichum/fisiologia , Ergosterol/antagonistas & inibidores , Ergosterol/biossíntese , Hifas/ultraestrutura , Mangifera/microbiologia , Testes de Sensibilidade Microbiana , Microscopia Eletrônica de Transmissão , Micélio/efeitos dos fármacos , Micélio/crescimento & desenvolvimento , Doenças das Plantas/microbiologia , Esporos Fúngicos/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...