Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Dis Markers ; 2023: 5552798, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37215201

RESUMO

Background: Liver hepatocellular carcinoma (LIHC) is the most frequently seen type of primary liver cancer. Cuproptosis is a novel form of cell death highly associated with mitochondrial metabolism. However, the clinical impact and pertinent mechanism of cuproptosis genes in LIHC remain largely unknown. Methods: From public databases, we systematically assessed common genes from LIHC differentially expressed genes (DEGs) and cuproptosis-related genes using bioinformatics analysis. These common genes were then analyzed by enrichment analysis, mutation analysis, risk score model, and others to find candidate hub genes related to LIHC and cuproptosis. Next, hub genes were determined by expression, clinical factors, immunoassay, and prognostic nomogram. Results: Based on 129 cuproptosis-related genes and 3492 LIHC DEGs, we totally identified 21 downregulated and 18 upregulated common genes, and they were enriched in pathways, such as zinc ion homeostasis and oxidative phosphorylation. In the mutation analysis, missense mutation was the most common type in LIHC patients, and the common gene F5 had the highest mutation frequency. After LASSO-Cox regression analysis and prognostic analysis, CDK1, ABCB6, LCAT, and COA6 were identified as prognostic signature genes. Among them, ABCB6 and LCAT were lowly expressed in tumors, and CDK1 and COA6 were highly expressed in tumors. In addition, ABCB6 and LCAT were negatively correlated with 6 kinds of immune cells, while CDK1 and COA6 were positively correlated with them. CDK1 and COA6 were identified as hub genes related to LIHC by Cox regression analysis and prognostic nomogram. Conclusion: CDK1 and COA6 are two oncogenes in LIHC, which are involved in the molecular mechanism of cuproptosis and LIHC. Besides, CDK1 and COA6 can positively regulate the expressions of immune cells in LIHC. In clinical practice, they can be used as immunotherapeutic targets and prognostic predictors in LIHC, which sheds new light on the scientific fields of cuproptosis and LIHC.


Assuntos
Apoptose , Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/genética , Proteínas de Transporte , Proteína Quinase CDC2/genética , Neoplasias Hepáticas/genética , Proteínas Mitocondriais , Nomogramas , Prognóstico , Cobre
3.
Cell Prolif ; 53(6): e12832, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32452127

RESUMO

OBJECTIVES: Tumour cell proliferation requires high metabolism to meet the bioenergetics and biosynthetic needs. Dauer in Caenorhabditis elegans is characterized by lower metabolism, and we established an approach with C elegans to find potential tumour therapy targets. MATERIALS AND METHODS: RNAi screening was used to find dauer-related genes, and these genes were further analysed in glp-1(-) mutants for tumour-suppressing testing. The identified tumour-related genes were verified in clinical tumour tissues. RESULTS: The lifespan of glp-1(-) mutants was found to be extended by classical dauer formation signalling. Then, 61 of 287 kinase-coding genes in Caenorhabditis elegans were identified as dauer-related genes, of which 27 were found to be homologous to human oncogenes. Furthermore, 12 dauer-related genes were randomly selected for tumour-suppressing test, and six genes significantly extended the lifespan of glp-1(-) mutants. Of these six genes, F47D12.9, W02B12.12 and gcy-21 were newly linked to dauer formation. These three new dauer-related genes significantly suppressed tumour cell proliferation and thus extended the lifespan of glp-1(-) mutants in a longevity- or dauer-independent manner. The mRNA expression profiles indicated that these dauer-related genes trigged similar low metabolism pattern in glp-1(-) mutants. Notably, the expression of homolog gene DCAF4L2/F47D12.9, TSSK6/W02B12.12 and NPR1/gcy-21 was found to be higher in glioma compared with adjacent normal tissue. In addition, the high expression of TSSK6/W02B12.12 and NPR1/gcy-21 correlated with a worse survival in glioma patients. CONCLUSIONS: Dauer gene screening in combination with tumour-suppressing test in glp-1(-) mutants provided a useful approach to find potential targets for tumour therapy via suppressing tumour cell proliferation and rewiring tumour cell metabolism.


Assuntos
Caenorhabditis elegans/genética , Glioma/metabolismo , Animais , Caenorhabditis elegans/crescimento & desenvolvimento , Caenorhabditis elegans/metabolismo , Proliferação de Células , Células Germinativas/citologia , Glioma/mortalidade , Glioma/patologia , Humanos , Estimativa de Kaplan-Meier , Longevidade/genética , Mutação , Neoplasias/genética , Prognóstico , Proteínas Serina-Treonina Quinases/metabolismo , Interferência de RNA , Receptores do Fator Natriurético Atrial/metabolismo
4.
Nat Commun ; 8: 15337, 2017 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-28643803

RESUMO

The von Hippel-Lindau (VHL) is deficient in ∼70% of clear-cell renal cell carcinomas (ccRCC), which contributes to the carcinogenesis and drug resistance of ccRCC. Here we show that VHL-deficient ccRCC cells present enhanced cytotoxicity of anthracyclines in a hypoxia-inducible factor-independent manner. By subtractive proteomic analysis coupling with RNAi or overexpression verification, aldehyde dehydrogenase 2 (ALDH2) is found to be transcriptionally regulated by VHL and contributes to enhanced anthracyclines cytotoxicity in ccRCC cells. Furthermore, VHL regulates ALDH2 expression by directly binding the promoter of -130 bp to -160 bp to activate the transcription of hepatocyte nuclear factor 4 alpha (HNF-4α). In addition, a positive correlation is found among the protein expressions of VHL, HNF-4α and ALDH2 in ccRCC samples. These findings will deepen our understanding of VHL function and shed light on precise treatment for ccRCC patients.


Assuntos
Aldeído-Desidrogenase Mitocondrial/genética , Antraciclinas/uso terapêutico , Carcinoma de Células Renais/tratamento farmacológico , Carcinoma de Células Renais/genética , Regulação para Baixo/genética , Neoplasias Renais/tratamento farmacológico , Neoplasias Renais/genética , Proteína Supressora de Tumor Von Hippel-Lindau/metabolismo , Aldeído-Desidrogenase Mitocondrial/metabolismo , Animais , Antraciclinas/farmacologia , Antraciclinas/toxicidade , Carcinoma de Células Renais/patologia , Morte Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Regulação para Baixo/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Fator 4 Nuclear de Hepatócito/metabolismo , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Neoplasias Renais/patologia , Masculino , Camundongos Nus , Proteínas de Neoplasias/metabolismo , Proteômica , Transcrição Gênica/efeitos dos fármacos
5.
Oncotarget ; 7(28): 43669-43679, 2016 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-27248320

RESUMO

Obesity is a known cause of gallstone formation and gallstones increases the risk of gallbladder cancer (GBC), but the relation of body mass index (BMI) to GBC remains incompletely understood. To help elucidate the role of obesity in GBC, we performed a meta-analysis of the relationship between BMI and GBC risk. PUBMED and EMBASE databases were searched up to April 17, 2016. Fifteen articles with 5902 cases were identified. Random-effects models and dose-response meta-analyses were used to pool study results. Compared to normal weight, the pooled relative risks (RRs) and the corresponding 95% confidence intervals (CI) of GBC for overweight and obesity is 1.10 (0.98-1.23) and 1.58 (1.43-1.75) respectively. The RRs and 95% CI of overweight and obesity in man are 0.98 (0.90-1.08) and 1.43 (1.19-1.71), while the corresponding RRs in woman are 1.29 (1.08-1.55) and 1.68 (1.41-2.00) when compared to normal weight. A nonlinear dose-response relationship between BMI and risk of GBC was found (P=0.001), and the risk increased by 4% for each 1 kg/m2 increment in BMI. When adjusted for sex, at the point of BMI=25 kg/m2, the RRs (95% CIs) for women and men were 1.13 (1.01-1.25) and 0.98 (0.90-1.07) respectively. The corresponding RRs (95%CIs) at the point of BMI=30 kg/m2 were 1.56(1.39-1.75) vs. 1.24(1.06-1.44). These results suggest that association of obesity and risk of GBC is stronger in woman. Furthermore, overweight is only associated with GBC in woman. A even stricter weight control might be necessary for woman to prevent GBC.


Assuntos
Neoplasias da Vesícula Biliar/epidemiologia , Obesidade/complicações , Sobrepeso/complicações , Adulto , Idoso , Índice de Massa Corporal , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Fatores de Risco , Distribuição por Sexo , Adulto Jovem
6.
PLoS Pathog ; 9(8): e1003545, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23990780

RESUMO

Nuclear hormone receptors respond to small molecules such as retinoids or steroids and regulate development. Signaling in the conserved p38/PMK-1 MAP kinase pathway regulates innate immunity. In this study, we show that the Caenorhabditis elegans nuclear receptor DAF-12 negatively regulates the defense against pathogens via the downstream let-7 family of microRNAs, which directly target SKN-1, a gene downstream of PMK-1. These findings identify nuclear hormone receptors as components of innate immunity that crosstalk with the p38/PMK-1 MAP kinase pathway.


Assuntos
Proteínas de Caenorhabditis elegans/imunologia , Caenorhabditis elegans/imunologia , Imunidade Inata/fisiologia , Sistema de Sinalização das MAP Quinases/imunologia , MicroRNAs/imunologia , Receptores Citoplasmáticos e Nucleares/imunologia , Animais , Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/genética , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/imunologia , Sistema de Sinalização das MAP Quinases/genética , MicroRNAs/genética , Proteínas Quinases Ativadas por Mitógeno/genética , Proteínas Quinases Ativadas por Mitógeno/imunologia , Receptores Citoplasmáticos e Nucleares/genética , Fatores de Transcrição/genética , Fatores de Transcrição/imunologia
7.
J Proteome Res ; 12(10): 4280-301, 2013 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-23879269

RESUMO

The proteolytic activation of protein kinase Cδ (PKCδ) generates a catalytic fragment called PKCδ-CF, which induces cell death. However, the mechanisms underlying PKCδ-CF-mediated cell death are largely unknown. On the basis of an engineering leukemic cell line with inducible expression of PKCδ-CF, here we employ SILAC-based quantitative phosphoproteomics to systematically and dynamically investigate the overall phosphorylation events during cell death triggered by PKCδ-CF expression. Totally, 3000 phosphorylation sites were analyzed. Considering the fact that early responses to PKCδ-CF expression initiate cell death, we sought to identify pathways possibly related directly with PKCδ by further analyzing the data set of phosphorylation events that occur in the initiation stage of cell death. Interacting analysis of this data set indicates that PKCδ-CF triggers complicated networks to initiate cell death, and motif analysis and biochemistry verification reveal that several kinases in the downstream of PKCδ conduct these networks. By analysis of the specific sequence motif of kinase-substrate, we also find 59 candidate substrates of PKCδ from the up-regulated phosphopeptides, of which 12 were randomly selected for in vitro kinase assay and 9 were consequently verified as substrates of PKCδ. To our greatest understanding, this study provides the most systematic analysis of phosphorylation events initiated by the cleaved activated PKCδ, which would vastly extend the profound understanding of PKCδ-directed signal pathways in cell death. The MS data have been deposited to the ProteomeXchange with identifier PXD000225.


Assuntos
Apoptose , Fosfoproteínas/metabolismo , Proteína Quinase C-delta/metabolismo , Processamento de Proteína Pós-Traducional , Proteoma/metabolismo , Sequência de Aminoácidos , Linhagem Celular Tumoral , Sequência Consenso , Proteínas Culina/metabolismo , Ontologia Genética , Células HEK293 , Humanos , Dados de Sequência Molecular , Fosfoproteínas/genética , Fosforilação , Mapas de Interação de Proteínas , Proteoma/genética , Proteômica , Transdução de Sinais
8.
Biochem Biophys Res Commun ; 433(2): 220-5, 2013 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-23473759

RESUMO

Our previous study has shown that PKCδ stimulates proteasome-dependent degradation of C/EBPα, which partially contributes to PKCδ-mediated apoptosis. However, the molecular interrelationship between these two important proteins is still unknown. In this study, we reported that C/EBPα was phosphorylated by activated PKCδ on three serines, two of which were reported for the first time. Phosphorylated C/EBPα underwent cytoplasmic translocation, which led to the inactivation of its transcriptional activity. Inactive cytoplasmic C/EBPα was finally subjected to proteasome degradation. This work reveals the exquisite molecular events linking activated PKCδ and C/EBPα degradation during cell apoptosis.


Assuntos
Proteína alfa Estimuladora de Ligação a CCAAT/metabolismo , Citoplasma/metabolismo , Proteína Quinase C-delta/metabolismo , Apoptose/fisiologia , Proteína alfa Estimuladora de Ligação a CCAAT/genética , Linhagem Celular , Humanos , Fosforilação , Proteína Quinase C-delta/genética , Transporte Proteico , Serina/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...