Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Colloid Interface Sci ; 648: 1015-1024, 2023 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-37343488

RESUMO

This study presents a comprehensive community data-driven surface complexation modeling framework for simulating potentiometric titration of mineral surfaces. Compiled community data for ferrihydrite, goethite, hematite, and magnetite are fit to produce representative protolysis constants that can reproduce potentiometric titration data collected from multiple literature sources. Using this framework, the impact of surface complexation model type and surface site density (SSD) on the fit quality and protolysis constants can be readily evaluated. For example, the non-electrostatic model yielded a poor data fit compared to diffuse double layer model and constant capacitance models due to the absence of known surface charge effects. Regardless of the choice of iron oxide mineral, pKa1 decreased with increasing SSD while the opposite tendency was observed for pKa2. This newly developed framework demonstrates a method to reconcile community data-wide potentiometric titration data using Findable, Accessible, Interoperable, Reusable data principles to produce mineral protolysis constants that improve robustness of surface complexation models for applications in metal sorption and reactive transport modeling. The framework is readily expandable (as community data increase) and extensible (as the number of minerals increase). The framework provides a path forward for developing self-consistent, comprehensive, and updateable surface complexation databases for surface complexation and reactive transport modeling.

2.
Sci Total Environ ; 705: 135814, 2020 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-31972945

RESUMO

Magnetic Mg/Al layered double hydroxides (LDH) with three cationic ratios (Mg/Al = 2:1, 3:1, and 4:1) were successfully synthesized and utilized for the first time in an iodide adsorption study. The effects of the Mg/Al ratio of LDH on iodide adsorption were investigated, and physicochemical properties of synthetic LDHs depending on Mg/Al ratio were confirmed by XRD, TEM, ICP-OES, VSM, Zeta-potential, and BET analyses. The ferrimagnetic property was well preserved even after a coating of LDH on magnetite irrespective of the Mg/Al ratio. Among the three Mg/Al ratios, the calcined Fe3O4@4:1 Mg/Al LDH exhibited excellent performance for iodide removal with 105.04 mg/g of the maximum iodide adsorption capacity due to its wide interlayer spacing and largest BET surface area. In the presence of competing carbonate anions, the Fe3O4@4:1 LDH showed removal rate of >80% at a dosage of over 3 g/L solid to liquid ratio. The recyclability test of Fe3O4@4:1 LDH showed that the removal performance for iodide is maintained at >80% even during the first to the fourth cycles. These results demonstrated that the magnetic Mg/Al LDH adsorbent can be effectively utilized for remediation of radioactive iodide anions with high efficiency and economics.

3.
Anal Chem ; 83(24): 9456-61, 2011 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-22054422

RESUMO

We have applied a dual-pulse laser-induced breakdown spectroscopy (DP-LIBS) to sensitively detect concentrations of boron and lithium in aqueous solution. Sequential laser pulses from two separate Q-switched Nd:YAG lasers at 532 nm wavelength have been employed to generate laser-induced plasma on a water jet. For achieving sensitive elemental detection, the optimal timing between two laser pulses was investigated. The optimum time delay between two laser pulses for the B atomic emission lines was found to be less than 3 µs and approximately 10 µs for the Li atomic emission line. Under these optimized conditions, the detection limit was attained in the range of 0.8 ppm for boron and 0.8 ppb for lithium. In particular, the sensitivity for detecting boron by excitation of laminar liquid jet was found to be excellent by nearly 2 orders of magnitude compared with 80 ppm reported in the literature. These sensitivities of laser-induced breakdown spectroscopy are very practical for the online elemental analysis of boric acid and lithium hydroxide serving as neutron absorber and pH controller in the primary coolant water of pressurized water reactors, respectively.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...