Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Bioresour Technol ; 394: 130165, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38072079

RESUMO

The present study evaluated the growth, self-flocculation, lipid content, and pollutants removal by Limnothrix sp. BASMWW-9 isolated from municipal wastewater treatment system and cultivated in municipal wastewater. The biomass yield and lipid content after 6 days of cultivation were 1.07 g dw/L and 27.34 %dw, respectively. In addition, its self-flocculating ability reached up to 90 % after harvesting time of 180 min. Moreover, COD,NH3-N, TN, and TP removalefficiencies were 71.65 %, 81.89 %, 74.64 %, and 80.16 %, respectively. The self-flocculation performance of Limnothrix sp. was greatly associated to its morphology and production of extracellular polymeric substances (EPS), with significant positive impact of the high calcium and magnesium content in municipal wastewater. Interestingly, blue light irradiation during harvest enhanced the aggregation and floc formation as a floating biomat, which was attributed to enhanced polysaccharides production. This study provides innovative harvest method for Limnothrix sp. BASMWW-9 cultivated in wastewater using blue light for enhanced lipid recovery.


Assuntos
Cianobactérias , Microalgas , Purificação da Água , Águas Residuárias , Nitrogênio , Biomassa , Lipídeos
2.
Water Sci Technol ; 81(11): 2441-2449, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32784287

RESUMO

Municipal sludge disposal and recycle has become a prominent research theme. In this study, a sequential process for integral treatment of municipal sludge was primarily presented, combining acid leaching, anion exchange and aerobic composting. The aim of the process was to remove chromium (Cr) from the sludge and reuse the sludge as manure. Firstly, Cr was removed from municipal sludge via the acid leaching process; the removal rate was up to 57.43%. Then, ion exchange resin was used to remove Cr from leachate; the removal rate reached 95%. Aluminum sheet was used to replace the Cr from eluent; the replacement rate was 63.3%. The aerobic composting process could be successfully warmed up to above 55 °C and lasted for 4 days; the seed germination index reached 68.3%. After the composting process, the residual Cr in sludge mainly existed at a more stable residual state and organic binding state. Overall, this novel sequential process serves as a potential high-efficiency, green, low-energy way for municipal sludge recycle.


Assuntos
Compostagem , Ânions , Esterco , Reciclagem , Esgotos
3.
World J Microbiol Biotechnol ; 36(7): 105, 2020 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-32632607

RESUMO

With the increasing demand for energy, microalgae, as one of the promising feedstocks of biodiesel, has raised great awareness. Because of its small size, similar density to water and electrical stability, harvesting methods of microalgae that have low energy consumption and that are highly efficient, easy to large-scale and environmentally friendly have become a bottleneck restricting development of the whole process. Among the numerous possible harvesting methods, magnetic flocculation has the advantages of simple operation, fast separation and energy saving and thus is considered as a promising novel harvesting method. In this review, we have summarized the updated status and application potential of magnetic flocculation, including the principle of magnetic flocculation, magnetic flocculating materials, flocculating efficiency and its effect on downstream process. The major challenges such as magnetic materials recovery, large-scale magnetic flocculation device design, and magnetic flocculation costs are also discussed.


Assuntos
Biocombustíveis , Fenômenos Magnéticos , Microalgas , Biomassa , Biotecnologia/métodos , Floculação , Microalgas/crescimento & desenvolvimento , Microalgas/metabolismo , Água
4.
Bioresour Technol ; 306: 123162, 2020 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-32197194

RESUMO

Herein, a novel innovative lipid co-extraction strategy using the biodiesel-producing microalga Chlorella pyrenoidosa and planktonic cladoceran Daphnia was proposed. Co-extraction occurred as Daphnia ingested and digested microalgal cells in a pre-treatment process; thereafter, lipids from these organisms were extracted. Composition of fatty acids from C. pyrenoidosa and Daphnia were appropriate as potential biodiesel feedstocks. Daphnia had different absorption and conversion capacities of various fatty acids from C. pyrenoidosa, which showed potential for improving biodiesel characteristics. Linoleic acid (LA, C18:2n-6) and alpha-linolenic acid (ALA, C18:3n-3) were absorbed significantly into the body of Daphnia. The optimal lipid extraction and fatty acid methyl esters (FAMEs) recovery rates were up to 41.08% and 12.35%, respectively, which were greater than that of the traditional lipid extraction method due to the rich oil content of Daphnia. Overall, this lipid co-extraction process serves a potential Daphnia utilization as an economical, green, low-energy way for microalgae biodiesel production.

5.
Chemosphere ; 245: 125559, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-31841794

RESUMO

As a widely used detergent, anionic surfactant linear alkylbenzene sulfonates (LAS) is a common toxic pollutant in wastewater. In this study, Pseudomonas sp. strain H6 was isolated from activated sludge and municipal wastewater, which had good degradation effect on LAS. The results showed that strain H6 could grow with LAS as the sole carbon source. When the concentration of LAS was less than 100 mg/L, strain H6 could degrade more than 80% of the LAS within 24 h. Meanwhile, the growth of strain H6 increased with the increase of LAS concentration, reaching the maximum growth at the presence of 100 mg/L LAS. When the concentration of LAS was over 100 mg/L, strain H6's cell growth and degradation of LAS showed a downward trend due to the strong toxicity of LAS, and the degradation rate of LAS almost tended to zero with 500 mg/L LAS. Further mutagenesis analysis of strain H6 showed that positive mutation occurred under ultraviolet and nitrite mutagenesis with using ampicillin to increase the screening pressure, and the degradation rate of LAS was 44.91% higher than that of original strain.


Assuntos
Ácidos Alcanossulfônicos/metabolismo , Bactérias/metabolismo , Biodegradação Ambiental , Carbono/metabolismo , Mutagênese , Esgotos/microbiologia , Tensoativos/metabolismo , Águas Residuárias
6.
Environ Pollut ; 255(Pt 2): 113258, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31669955

RESUMO

Ammonia oxidation is the rate-limiting step in nitrification process and dominated by ammonia-oxidizing bacteria (AOB) and ammonia-oxidizing archaea (AOA). In the present study, a highly enriched culture of AOA was obtained from urban polluted water in Shahe River, Shenzhen, China. The optimum growth conditions were identified by orthogonal analysis as 37 °C, with pH 7.0 and initial ammonia concentration of 1.0 mM. Under these conditions, the highest abundance of AOA was obtained as 4.6 × 107 copies/ng DNA. Growth of AOA in polluted river water showed significant reduction in ammonia concentration in AOA-enriched cultures without antibiotics after 10 days of incubation, while synchronous increase in nitrate concentration was up to 12.7 mg/L. However, AOA-enriched by antibiotic showed insignificant changes in ammonia or nitrite concentration. This study showed that AOB play an important role in ammonia oxidation of polluted river water, and AOA alone showed insignificant changes in ammonia or nitrite concentrations. Therefore, the ammonia oxidation performance of natural water could not be improved by adding high concentration AOA bacterial liquid.


Assuntos
Amônia/metabolismo , Archaea/metabolismo , Biodegradação Ambiental , Poluentes Químicos da Água/metabolismo , Bactérias/genética , Betaproteobacteria , China , Nitrificação , Oxirredução , Filogenia , Rios/microbiologia , Microbiologia do Solo
7.
Bioresour Technol ; 290: 121771, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31302468

RESUMO

In this work, a novel flocculation process by using nano-Fe3O4 coated with polyethyleneimine (Fe3O4@PEI) as magnetic seeds was developed to harvest the microalgae cultivated in urban sewage. Experiment results indicated that the harvest efficiency of Chlorella pyrenoidosa (0.5 g/L) was 98.92 ±â€¯0.41% under the optimal conditions of Fe3O4@PEI dose of 20 mL/L, flocculation time of 20 min, and stirring speed of 800 rpm (3 min), while that of Scenedesmus obliquus (0.4 g/L) was 98.45 ±â€¯0.35% under a Fe3O4@PEI dose of 16 mL/L, flocculation time of 15 min, and stirring speed of 730 rpm (3 min). Moreover, the process did not reduce the lipid content of microalgae and quality of biodiesel. After microalgae harvest, Fe3O4@PEI could be recovered by ultrasonication, re-wrapped with polyethyleneimine and reused to reduce operational cost.


Assuntos
Chlorella , Microalgas , Scenedesmus , Floculação , Polietilenoimina , Esgotos
8.
Water Res ; 160: 339-349, 2019 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-31158616

RESUMO

The wide application of chlorine disinfectant for drinking water treatment has led to the appearance of chlorine-resistant bacteria, which pose a severe threat to public health. This study was performed to explore the physiological-biochemical characteristics and environmental influence (pH, temperature, and turbidity) of seven strains of chlorine-resistant bacteria isolated from drinking water. Ozone disinfection was used to investigate the inactivation effect of bacteria and spores. The DNA concentration and cell surface structure variations of typical chlorine-resistant spores (Bacillus cereus spores) were also analysed by real-time qPCR, flow cytometry, and scanning electron microscopy to determine their inactivation mechanisms. The ozone resistance of bacteria (Aeromonas jandaei < Vogesella perlucida < Pelomonas < Bacillus cereus < Aeromonas sobria) was lower than that of spores (Bacillus alvei < Lysinibacillus fusiformis < Bacillus cereus) at an ozone concentration of 1.5 mg/L. More than 99.9% of Bacillus cereus spores were inactivated by increasing ozone concentration and treatment duration. Moreover, the DNA content of Bacillus cereus spores decreased sharply, but approximately 1/4 of the target genes remained. The spore structure exhibited shrinkage and folding after ozone treatment. Both cell structures and gene fragments were damaged by ozone disinfection. These results showed that ozone disinfection is a promising method for inactivating chlorine-resistant bacteria and spores in drinking water.


Assuntos
Desinfetantes , Água Potável , Ozônio , Purificação da Água , Cloro , Desinfecção , Esporos Bacterianos
9.
World J Microbiol Biotechnol ; 34(3): 39, 2018 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-29460187

RESUMO

Subcritical co-solvents of n-hexane/isopropanol were primarily utilized to extract lipid from wet microalgal pastes of Scenedesmus obliquus. The effects of key operational parameters were investigated, and the optimal parameters were obtained: solvent ratio of n-hexane to isopropanol was 3:2 (V:V), phase ratio of co-solvents to microalgal biomass was 35:1 (mL:g), reactor stirring speed was 900 rpm, extraction time was 60 min. Additional pretreatment with acid, ultrasonic and microwave as well as enhanced subcritical pressure/heating treatments were also applied to further study their effects on lipid extraction. The results showed that the lipid recovery rate with acid pretreatment was 8.6 and 6.2% higher than ultrasonic and microwave pretreatment; the optimum enhanced subcritical condition was 55 °C with atmospheric pressure. Under optimal operating conditions, the lipid and FAME yield were 13.5 and 7.2%, which was 82.6 and 135.1% higher than the traditional method. The results indicated that the subcritical n-hexane/isopropanol extraction process had promising application potential.


Assuntos
2-Propanol/química , Hexanos/química , Lipídeos/química , Lipídeos/isolamento & purificação , Microalgas/química , Scenedesmus/química , Ácidos , Análise de Variância , Biocombustíveis , Biomassa , Micro-Ondas , Pressão , Scenedesmus/crescimento & desenvolvimento , Solventes/química , Temperatura , Ultrassom
10.
Huan Jing Ke Xue ; 38(8): 3347-3353, 2017 Aug 08.
Artigo em Chinês | MEDLINE | ID: mdl-29964943

RESUMO

Cultivating microalgae using municipal wastewater can achieve not only treatment of the wastewater but also recovery of algae for use as a biofuel energy source. Wastewater provides necessary nutrients, such as nitrogen and phosphorus, and water for microalgal growth. Because of the complexity of components of municipal wastewater, variety of adaptability, and tolerance to wastewater of different microalgal species, it is necessary to select a suitable microalgal species with high performance in lipid production and identify proper pretreatment of the wastewater to achieve high lipid production using municipal wastewater for algal biofuel production. Based on microalgal growth, lipid production, and clean-up performance of wastewater, we selected Scenedesmus obliquus wild strain and Chlorella pyrenoidosa mutant by ion beam implantation from a test group for the biofuel production. Laboratory test results showed that S. obliquus wild strain and C. pyrenoidosa mutant had respective lipid productions of 0.43 g·L-1 and 0.33 g·L-1, with more C16-C18 fatty acids, which were suitable for biodiesel production. The pollutant removals from the wastewater by S. obliquus wild strain and C. pyrenoidosa mutant were COD, 86.4% vs. 81.8%; NH4+-N, 100.0% vs. 100.0%; TN, 94.3% vs. 94.9%; and TP, 93.4% vs. 94.2% respectively. The two different microalgal strains required different pretreatments. After removal of large particles, the raw wastewater could be directly used for the cultivation of S. obliquus wild strain. To grow C. pyrenoidosa mutant with municipal wastewater, pretreatment procedures including precipitation followed by filtration should be employed.


Assuntos
Biocombustíveis , Lipídeos/biossíntese , Microalgas/metabolismo , Águas Residuárias , Biomassa , Chlorella/metabolismo , Scenedesmus/metabolismo
11.
Huan Jing Ke Xue ; 38(10): 4279-4285, 2017 Oct 08.
Artigo em Chinês | MEDLINE | ID: mdl-29965212

RESUMO

Cultivating microalgae using municipal wastewater can treat wastewater and recover algal biofuel as an energy source. Wastewater provides necessary nutrients such as nitrogen, phosphorus, and water for microalgal growth. Due to the complexity of the components of municipal wastewater and the complex symbiotic and antagonistic relationship between microalgae and bacteria, it is necessary to select the suitable dominant bacterial species that can promote the microalgae to achieve high lipid production and algal biofuel production using municipal wastewater. Based on the microalgal growth and lipid production, we selected Photosynthetic bacteria and W4 bacteria from 13 different types of bacteria and analyzed the microbial community structure of the municipal wastewater at the end of the microalgal culture cycle. Laboratory test results showed that the amount of lipid production by Photosynthetic bacteria and W4 was 0.114 g·L-1 and 0.113 g·L-1, which is 22.58% and 21.50% higher than the production by the control group, respectively. According to the gas chromatography (GC) analysis of the lipids, Photosynthetic bacteria and W4 bacteria exerted a relatively low influence on the composition of fatty acids of Chlorella pyrenoidosa but increased the content of monounsaturated fatty acids that improve the grade of biodiesel. The results of the analysis of microbial community structure of the municipal wastewater showed that Photosynthetic and W4 bacteria reduced the richness and diversity of bacterial communities and have the potential to become the dominant bacterial community.


Assuntos
Bactérias/classificação , Chlorella/química , Lipídeos/química , Águas Residuárias/microbiologia , Biocombustíveis , Biomassa , Microalgas/química
12.
Bioprocess Biosyst Eng ; 39(7): 1073-9, 2016 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-26969589

RESUMO

Despite the significant breakthroughs in research on microalgae as a feedstock for biodiesel, its production cost is still much higher than that of fossil diesel. One possible solution to overcome this problem is to optimize algal growth and lipid production in wastewater. The present study examines the optimization of pretreatment of municipal wastewater and aeration conditions in order to enhance the lipid productivity of Scenedesmus obliquus. Results showed that no significant differences were recorded in lipid productivity of S. obliquus grown in primary settled or sterilized municipal wastewater; however, ultrasound pretreatment of wastewater significantly decreased the lipid production. Whereas, aeration rates of 0.2 vvm significantly increased lipid content by 51 %, with respect to the non-aerated culture, which resulted in maximum lipid productivity (32.5 mg L(-1) day(-1)). Furthermore, aeration enrichment by 2 % CO2 resulted in increase of lipid productivity by 46 % over the CO2 non-enriched aerated culture. Fatty acid profile showed that optimized aeration significantly enhanced monounsaturated fatty acid production, composed mainly of C18:1, by 1.8 times over the non-aerated S. obliquus culture with insignificant changes in polyunsaturated fatty acid proportion; suggesting better biodiesel characteristics for the optimized culture.


Assuntos
Ar , Biocombustíveis , Scenedesmus/metabolismo , Águas Residuárias , Scenedesmus/crescimento & desenvolvimento
13.
Water Res ; 86: 132-8, 2015 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-26253865

RESUMO

Algal-bacterial symbiotic system, with biological synergism of physiological functions of both algae and bacteria, has been proposed for cultivation of microalgae in municipal wastewater for biomass production and wastewater treatment. The algal-bacterial symbiotic system can enhance dissolved oxygen production which enhances bacterial growth and catabolism of pollutants in wastewater. Therefore, the oxygen production efficiency of microalgae in algal-bacterial systems is considered as the key factor influencing the wastewater treatment efficiency. In the present study, we have proposed a novel approach which uses static magnetic field to enhance algal growth and oxygen production rate with low operational cost and non-toxic secondary pollution. The performance of oxygen production with the magnetic field was evaluated using Scenedesmus obliquus grown in municipal wastewater and was calculated based on the change in dissolved oxygen concentration. Results indicated that magnetic treatment stimulates both algal growth and oxygen production. Application of 1000 GS of magnetic field once at logarithmic growth phase for 0.5 h increased the chlorophyll-a content by 11.5% over the control after 6 days of growth. In addition, magnetization enhanced the oxygen production rate by 24.6% over the control. Results of the study confirmed that application of a proper magnetic field could reduce the energy consumption required for aeration during the degradation of organic matter in municipal wastewater in algal-bacterial symbiotic systems.


Assuntos
Clorofila/metabolismo , Campos Magnéticos , Oxigênio/metabolismo , Scenedesmus/crescimento & desenvolvimento , Scenedesmus/metabolismo , Biodegradação Ambiental , Clorofila A , Eliminação de Resíduos Líquidos/métodos , Águas Residuárias/microbiologia , Poluentes Químicos da Água/química
14.
Crit Rev Biotechnol ; 35(2): 255-68, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24641484

RESUMO

Algal biofuel has become an attractive alternative of petroleum-based fuels in the past decade. Microalgae have been proposed as a feedstock to produce biodiesel, since they are capable of mitigating CO2 emission and accumulating lipids with high productivity. This article is an overview of the updated status of biofuels, especially biodiesel production from microalgae including fundamental research, culture selection and engineering process development; it summarizes research on mathematical and life cycle modeling on algae growth and biomass production; and it updates global efforts of research and development and commercialization attempts. The major challenges are also discussed.


Assuntos
Biocombustíveis , Biotecnologia/métodos , Microalgas , Modelos Biológicos , Dióxido de Carbono , Lipídeos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...