Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cells ; 9(5)2020 05 11.
Artigo em Inglês | MEDLINE | ID: mdl-32403252

RESUMO

Chromatin remodeling, including histone modification, chromatin (un)folding, and nucleosome remodeling, is a significant transcriptional regulation mechanism. By these epigenetic modifications, transcription factors and their regulators are recruited to the promoters of target genes, and thus gene expression is controlled through either transcriptional activation or repression. The Mat1-mediated transcriptional repressor (MMTR)/DNA methyltransferase 1 (DNMT1)-associated protein (Dmap1) is a transcription corepressor involved in chromatin remodeling, cell cycle regulation, DNA double-strand break repair, and tumor suppression. The Tip60-p400 complex proteins, including MMTR/Dmap1, interact with the oncogene Myc in embryonic stem cells (ESCs). These proteins interplay with the stem cell-related proteome networks and regulate gene expressions. However, the detailed mechanisms of their functions are unknown. Here, we show that MMTR/Dmap1, along with other Tip60-p400 complex proteins, bind the promoters of differentiation commitment genes in mouse ESCs. Hence, MMTR/Dmap1 controls gene expression alterations during differentiation. Furthermore, we propose a novel mechanism of MMTR/Dmap1 function in early stage lineage commitment of mouse ESCs by crosstalk with the polycomb group (PcG) proteins. The complex controls histone mark bivalency and transcriptional poising of commitment genes. Taken together, our comprehensive findings will help better understand the MMTR/Dmap1-mediated transcriptional regulation in ESCs and other cell types.


Assuntos
Linhagem da Célula , Células-Tronco Embrionárias Murinas/citologia , Células-Tronco Embrionárias Murinas/metabolismo , Proteínas do Grupo Polycomb/metabolismo , Proteínas Repressoras/metabolismo , Animais , Diferenciação Celular , Montagem e Desmontagem da Cromatina , DNA Helicases/metabolismo , Proteínas de Ligação a DNA/metabolismo , Células HEK293 , Histonas/metabolismo , Humanos , Lisina/metabolismo , Lisina Acetiltransferase 5/metabolismo , Metilação , Camundongos , Camundongos SCID , Modelos Biológicos , Complexo Repressor Polycomb 2/metabolismo , Regiões Promotoras Genéticas , Ligação Proteica , Proteínas Repressoras/química , Transativadores/metabolismo
2.
Regul Toxicol Pharmacol ; 81: 437-447, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-27693706

RESUMO

Umbilical cord-derived mesenchymal stem cells (UC-MSCs) therapy might be an alternative to liver transplantation for acute or chronic liver injury. The aim of this study was to evaluate the efficacy of human UC-MSCs on carbon tetrachloride (CCl4)-induced acute liver injury. In addition, its toxicity, tumorigenicity, and biodistribution were determined. Significant hepatoprotective effects of hUC-MSCs with decreased levels of hepatocellular necrosis and lobular neutrophilic infiltration were found. Regarding the safety of hUC-MSCs, no serious hUC-MSCs-related changes (body weight, food/water consumption, clinical symptom, urinalysis, hematology, clinical chemistry, organ weight, and histopathology) were observed in a 13-week subchronic toxicity study. In a 26-week tumorigenicity study, no mice developed tumor related to hUC-MSCs transplantation up to 1 × 108 cells/kg. In particular, human mitochondrial sequence detection revealed that most hUC-MSCs were cleared from the major organs of the mice at 13 weeks after transplantation. There was no systemic toxicity or neoplastic finding either. Taken together, these results suggested that hUC-MSCs have great potential for future clinical treatment of acute liver disease.


Assuntos
Falência Hepática Aguda/patologia , Falência Hepática Aguda/terapia , Transplante de Células-Tronco Mesenquimais , Células-Tronco Mesenquimais/citologia , Cordão Umbilical/citologia , Animais , Tetracloreto de Carbono , Humanos , Falência Hepática Aguda/induzido quimicamente , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos Nus
3.
Biochem Biophys Res Commun ; 351(3): 682-8, 2006 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-17078929

RESUMO

As the LIF-induced Jak1/STAT3 pathway has been reported to play a crucial role in self-renewal of mESCs, we sought to determine if Jak2, which is also expressed in mESCs, might also be involved in the pathway. By employing an RNAi strategy, we established both Jak2 and Jak2/Tyk2 knockdown mESC clones. Both Jak2 and Jak2/Tyk2 knockdown clones maintained the undifferentiated state as wild-type controls, even in a very low concentration of LIF. However, we observed not only faster onset of differentiation but also differential expression of tissue-specific lineage genes for ectodermal and mesodermal, but not endodermal origins from embryoid bodies generated from both types of knockdown clones compared to the wild-type. Furthermore, the reduced level of Jak2 caused differentiation of mESCs in the presence of LIF when the Wnt pathway was activated by LiCl treatment. Taken together, we demonstrated that Jak2 and Tyk2 are not involved in LIF-induced STAT3 pathway for self-renewal of mESCs, but play a role in early lineage decision of mESCs to various differentiated cell types.


Assuntos
Diferenciação Celular/fisiologia , Células-Tronco Embrionárias/citologia , Células-Tronco Embrionárias/metabolismo , Janus Quinase 2/metabolismo , Fator de Transcrição STAT3/metabolismo , Transdução de Sinais/fisiologia , TYK2 Quinase/metabolismo , Animais , Linhagem Celular , Proliferação de Células , Sobrevivência Celular , Camundongos
4.
Mol Cells ; 17(3): 454-61, 2004 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-15232220

RESUMO

CP2 is a member of a family of transcription factors that regulate genes involved in events from early development to terminal differentiation. In an effort to understand how it selects its target genes we carried out a database search, and located several CP2 binding motifs in the promoter region of bone morphogenetic protein-4 (BMP4). BMP4 is a key regulator of cell fate and body patterning throughout development. For the CP2 binding motifs in BMP4 promoter region to be relevant in vivo, CP2 and BMP4 should be expressed together. We found that CP2b and CP2c, two potent transcriptional activators, are expressed in a manner similar to BMP4 during osteoblast differentiation of C3H10T1/2 cells. In in vitro assays, the CP2 proteins bound to two CP2 binding motifs (-715 to -676 and -147 to -118) in the BMP4 promoter, and luciferase reporter assays indicated that this binding was essential for transcription of BMP4 during osteoblast differentiation. Taken together, our data indicate that CP2b and CP2c play important roles during bone development by activating BMP4 transcription.


Assuntos
Proteínas Morfogenéticas Ósseas/metabolismo , Diferenciação Celular/fisiologia , Proteínas de Ligação a DNA/metabolismo , Células-Tronco Mesenquimais/citologia , Regiões Promotoras Genéticas/genética , Fatores de Transcrição/metabolismo , Animais , Sequência de Bases , Proteína Morfogenética Óssea 4 , Proteínas Morfogenéticas Ósseas/genética , Proteínas de Ligação a DNA/genética , Bases de Dados de Ácidos Nucleicos , Regulação da Expressão Gênica , Luciferases/genética , Células-Tronco Mesenquimais/metabolismo , Camundongos , Dados de Sequência Molecular , RNA/genética , Proteínas de Ligação a RNA , Fatores de Transcrição/genética , Transcrição Gênica/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...