Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cell Discov ; 10(1): 62, 2024 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-38862506

RESUMO

Membrane budding, which underlies fundamental processes like endocytosis, intracellular trafficking, and viral infection, is thought to involve membrane coat-forming proteins, including the most observed clathrin, to form Ω-shape profiles and helix-forming proteins like dynamin to constrict Ω-profiles' pores and thus mediate fission. Challenging this fundamental concept, we report that polymerized clathrin is required for Ω-profiles' pore closure and that clathrin around Ω-profiles' base/pore region mediates pore constriction/closure in neuroendocrine chromaffin cells. Mathematical modeling suggests that clathrin polymerization at Ω-profiles' base/pore region generates forces from its intrinsically curved shape to constrict/close the pore. This new fission function may exert broader impacts than clathrin's well-known coat-forming function during clathrin (coat)-dependent endocytosis, because it underlies not only clathrin (coat)-dependent endocytosis, but also diverse endocytic modes, including ultrafast, fast, slow, bulk, and overshoot endocytosis previously considered clathrin (coat)-independent in chromaffin cells. It mediates kiss-and-run fusion (fusion pore closure) previously considered bona fide clathrin-independent, and limits the vesicular content release rate. Furthermore, analogous to results in chromaffin cells, we found that clathrin is essential for fast and slow endocytosis at hippocampal synapses where clathrin was previously considered dispensable, suggesting clathrin in mediating synaptic vesicle endocytosis and fission. These results suggest that clathrin and likely other intrinsically curved coat proteins are a new class of fission proteins underlying vesicle budding and fusion. The half-a-century concept and studies that attribute vesicle-coat contents' function to Ω-profile formation and classify budding as coat-protein (e.g., clathrin)-dependent or -independent may need to be re-defined and re-examined by considering clathrin's pivotal role in pore constriction/closure.

2.
Viruses ; 16(3)2024 03 20.
Artigo em Inglês | MEDLINE | ID: mdl-38543842

RESUMO

Coxsackievirus A6 (CV-A6) has emerged as the predominant causative agent of hand, foot, and mouth disease (HFMD) in young children. Since the declaration of coronavirus disease 2019 (COVID-19) as a global pandemic, the incidence of infectious diseases, including HFMD, has decreased markedly. When social mitigation was relaxed during the COVID-19 pandemic in 2022, the re-emergence of HFMD was observed in Gwangju, South Korea, and seasonal characteristics of the disease appeared to have changed. To investigate the molecular characteristics of enterovirus (EV) associated with HFMD during 2022, 277 specimens were collected. Children aged younger than 5 years accounted for the majority of affected individuals. EV detection and genotyping were performed using real-time RT-PCR and nested RT-PCR followed by sequence analysis. The EV detection rate was found to be 82.3%, and the main genotype identified was CV-A6. Sixteen CV-A6 samples were selected for whole genome sequencing. According to phylogenetic analysis, all CV-A6 strains from this study belonged to the sub-genotype D3 clade based on VP1 sequences. Analysis of 3D polymerase phylogeny showed that only the recombinant RF-A group was identified. In conclusion, circulating EV types should be continuously monitored to understand pathogen emergence and evolution during the post-pandemic era.


Assuntos
Enterovirus , Doença de Mão, Pé e Boca , Criança , Humanos , Pré-Escolar , Doença de Mão, Pé e Boca/epidemiologia , Filogenia , Pandemias , Enterovirus/genética , Antígenos Virais/genética , Reação em Cadeia da Polimerase em Tempo Real , Genótipo , China/epidemiologia
3.
Methods Mol Biol ; 2565: 77-87, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36205888

RESUMO

Recent advances in stimulated emission depletion (STED) microscopy offer an unparalleled avenue to study membrane dynamics of exo- and endocytosis, such as fusion pore opening, pore expansion, constriction, and closure, as well as the membrane transformation from flat-shaped to round-shaped vesicles in real time. Here we depict a method of using the state-of-the-art STED microscopy to image these membrane dynamics in bovine chromaffin cells. This method can potentially be applied to study other membrane structure dynamics in other cell model system.


Assuntos
Células Cromafins , Microscopia , Animais , Bovinos , Membrana Celular/metabolismo , Endocitose , Vesículas Secretórias/metabolismo
4.
Foods ; 11(18)2022 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-36141043

RESUMO

Leafy vegetables are used in various cuisines worldwide; however, as they cannot be peeled and their leaf surface area is large, the risk of retaining pesticide residues on these vegetables is relatively higher than on others. To our knowledge, this is the first comparative study to reveal the effect of removing pesticide residues from five artificially contaminated leafy vegetables (lettuce, perilla leaves, spinach, crown daisy, and ssamchoo (Brassica lee ssp. namai)) using different removal methods. The percent reduction range for each method was 43.7−77.0%, and the reduction range for the five leafy vegetables was 40.6−67.4%. Lettuce had the highest reduction (67.4 ± 7.3%), whereas ssamchoo had the lowest reduction (40.6 ± 12.9%). Spinach and crown daisy showed no significant difference in their reductions. Based on reduction by method, running water (77.0 ± 18.0%) and boiling (59.5 ± 31.2%) led to the highest reduction, whereas detergent (43.7 ± 14.5%) led to the lowest reduction. The reductions of chlorfenapyr, diniconazole, indoxacarb, fludioxonil, pyraclostrobin, and lufenuron in the leafy vegetables were lower with blanching and boiling than with other methods (p < 0.05). These results highlight the importance of thoroughly washing leafy vegetables to lower the intake of pesticide residues before cooking.

5.
STAR Protoc ; 3(2): 101404, 2022 06 17.
Artigo em Inglês | MEDLINE | ID: mdl-35600934

RESUMO

Real-time confocal and super-resolution imaging reveals membrane dynamics of exo- and endocytosis, including hemi-fusion, fusion pore opening, expansion, constriction, closure (kiss-and-run), fused-vesicle shrinking (shrink fusion), and flat membrane transition to vesicles via intermediate Λ- and Ω-shape structures. Here, we describe a protocol for imaging these membrane dynamics, including primary culture of bovine adrenal chromaffin cells, fluorescent probe application, patch-clamp to deliver depolarization and evoke exo- and endocytosis, electron microscopy (EM), and real-time confocal and stimulated emission depletion (STED) microscopy. For complete details on the use and execution of this protocol, please refer to Zhao et al. (2016), Shin et al. (2018), and Shin et al. (2021).


Assuntos
Células Cromafins , Fusão de Membrana , Animais , Bovinos , Endocitose , Microscopia/métodos , Vesículas Secretórias
6.
J Vis Exp ; (181)2022 03 16.
Artigo em Inglês | MEDLINE | ID: mdl-35377362

RESUMO

Dynamic fusion pore opening and closure mediate exocytosis and endocytosis and determine their kinetics. Here, it is demonstrated in detail how confocal microscopy was used in combination with patch-clamp recording to detect three fusion modes in primary culture bovine adrenal chromaffin cells. The three fusion modes include 1) close-fusion (also called kiss-and-run), involving fusion pore opening and closure, 2) stay-fusion, involving fusion pore opening and maintaining the opened pore, and 3) shrink-fusion, involving shrinkage of the fusion-generated Ω-shape profile until it merges completely at the plasma membrane. To detect these fusion modes, the plasma membrane was labeled by overexpressing mNeonGreen attached with the PH domain of phospholipase C δ (PH-mNG), which binds to phosphatidylinositol-4,5-bisphosphate (PtdIns(4,5)P2) at the cytosol-facing leaflet of the plasma membrane; vesicles were loaded with the fluorescent false neurotransmitter FFN511 to detect vesicular content release; and Atto 655 was included in the bath solution to detect fusion pore closure. These three fluorescent probes were imaged simultaneously at ~20-90 ms per frame in live chromaffin cells to detect fusion pore opening, content release, fusion pore closure, and fusing vesicle size changes. The analysis method is described to distinguish three fusion modes from these fluorescence measurements. The method described here can, in principle, apply to many secretory cells beyond chromaffin cells.


Assuntos
Células Cromafins , Fusão de Membrana , Animais , Bovinos , Membrana Celular/metabolismo , Exocitose , Microscopia Confocal
7.
Foods ; 10(2)2021 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-33672067

RESUMO

Leafy vegetables are widely consumed in South Korea, especially in the form of kimchi and namul (seasoned vegetables) and are used for wrapping meat. Therefore, the management of pesticide residues in leafy vegetables is very important. A total of 17,977 samples (49 leafy vegetables) were mainly collected in the largest production area of leafy vegetables (Gwangju Metropolitan City and Chonnam Province) in South Korea. They were analyzed within the government's monitoring programs (Gwangju Metropolitan City) of pesticide residues between 2005 and 2019. Pesticide residues were found in 2815 samples (15.7%), and 426 samples (2.4%) from among these exceeded the specified maximum residue limits (MRLs). Samples exceeding the MRLs were mostly detected in spinach, ssamchoo (brassica lee ssp. namai), crown daisy, lettuce, and perilla leaves. Azoxystrobin, dimethomorph, and procymidone were the most frequently detected pesticides. However, procymidone, diniconazole, and lufenuron were found to most frequently exceed the MRLs. The rate of MRLs exceeding has been managed below the average (2.4%) more recently than in the past in this area. Further, leafy vegetables with the most violations of the MRLs in our study in South Korea were not harmful to health by a risk assessment (the range of the hazard index was 0.001-7.6%).

8.
Cell Death Dis ; 12(3): 225, 2021 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-33649354

RESUMO

Conversion of astrocytes into neurons in vivo offers an alternative therapeutic approach for neuronal loss after injury or disease. However, not only the efficiency of the conversion of astrocytes into functional neurons by single Neurog2, but also the conundrum that whether Neurog2-induced neuronal cells (Neurog2-iNs) are further functionally integrated into existing matured neural circuits remains unknown. Here, we adopted the AAV(2/8) delivery system to overexpress single factor Neurog2 into astrocytes and found that the majority of astrocytes were successfully converted into neuronal cells in multiple brain regions, including the midbrain and spinal cord. In the midbrain, Neurog2-induced neuronal cells (Neurog2-iNs) exhibit neuronal morphology, mature electrophysiological properties, glutamatergic identity (about 60%), and synapse-like configuration local circuits. In the spinal cord, astrocytes from both the intact and lesioned sources could be converted into functional neurons with ectopic expression of Neurog2 alone. Notably, further evidence from our study also proves that Neurog2-iNs in the intact spinal cord are capable of responding to diverse afferent inputs from dorsal root ganglion (DRG). Together, this study does not merely demonstrate the feasibility of Neurog2 for efficient in vivo reprogramming, it gives an indication for the Neurog2-iNs as a functional and potential factor in cell-replacement therapy.


Assuntos
Astrócitos/metabolismo , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Transdiferenciação Celular , Mesencéfalo/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Neurogênese , Neurônios/metabolismo , Medula Espinal/metabolismo , Animais , Astrócitos/ultraestrutura , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Células Cultivadas , Dependovirus/genética , Técnicas de Transferência de Genes , Vetores Genéticos , Glutamato Descarboxilase/genética , Glutamato Descarboxilase/metabolismo , Mesencéfalo/ultraestrutura , Camundongos Transgênicos , Proteínas do Tecido Nervoso/genética , Neurônios/ultraestrutura , Oxirredutases atuantes sobre Doadores de Grupo CH-NH/genética , Oxirredutases atuantes sobre Doadores de Grupo CH-NH/metabolismo , Fenótipo , Medula Espinal/ultraestrutura , Proteína Vesicular 2 de Transporte de Glutamato/genética , Proteína Vesicular 2 de Transporte de Glutamato/metabolismo
9.
Stem Cell Reports ; 16(3): 534-547, 2021 03 09.
Artigo em Inglês | MEDLINE | ID: mdl-33577795

RESUMO

Direct neuronal reprogramming potentially provides valuable sources for cell-based therapies. Proneural gene Ascl1 converts astrocytes into induced neuronal (iN) cells efficiently both in vitro and in vivo. However, the underlying mechanisms are largely unknown. By combining RNA sequencing and chromatin immunoprecipitation followed by high-throughput sequencing, we found that the expression of 1,501 genes was markedly changed during the early stages of Ascl1-induced astrocyte-to-neuron conversion and that the regulatory regions of 107 differentially expressed genes were directly bound by ASCL1. Among Ascl1's direct targets, Klf10 regulates the neuritogenesis of iN cells at the early stage, Myt1 and Myt1l are critical for the electrophysiological maturation of iN cells, and Neurod4 and Chd7 are required for the efficient conversion of astrocytes into neurons. Together, this study provides more insights into understanding the molecular mechanisms underlying Ascl1-mediated astrocyte-to-neuron conversion and will be of value for the application of direct neuronal reprogramming.


Assuntos
Astrócitos/fisiologia , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Proteínas de Ligação a DNA/metabolismo , Fatores de Transcrição de Resposta de Crescimento Precoce/metabolismo , Regulação da Expressão Gênica , Fatores de Transcrição Kruppel-Like/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Neurônios/fisiologia , Fatores de Transcrição/metabolismo , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Reprogramação Celular , Sequenciamento de Cromatina por Imunoprecipitação , Proteínas de Ligação a DNA/genética , Fatores de Transcrição de Resposta de Crescimento Precoce/genética , Técnicas de Silenciamento de Genes , Células HEK293 , Humanos , Fatores de Transcrição Kruppel-Like/genética , Camundongos , Proteínas do Tecido Nervoso/genética , Análise de Sequência de RNA , Fatores de Transcrição/genética , Transcriptoma
10.
Cancers (Basel) ; 12(6)2020 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-32575619

RESUMO

Understanding the metabolic reprogramming of aggressive brain tumors has potential applications for therapeutics as well as imaging biomarkers. However, little is known about the nutrient requirements of isocitrate dehydrogenase 1 (IDH1) mutant gliomas. The IDH1 mutation involves the acquisition of a neomorphic enzymatic activity which generates D-2-hydroxyglutarate from α-ketoglutarate. In order to gain insight into the metabolism of these malignant brain tumors, we conducted metabolic profiling of the orthotopic tumor and the contralateral regions for the mouse model of IDH1 mutant glioma; as well as to examine the utilization of glucose and glutamine in supplying major metabolic pathways such as glycolysis and tricarboxylic acid (TCA). We also revealed that the main substrate of 2-hydroxyglutarate is glutamine in this model, and how this re-routing impairs its utilization in the TCA. Our 13C tracing analysis, along with hyperpolarized magnetic resonance experiments, revealed an active glycolytic pathway similar in both regions (tumor and contralateral) of the brain. Therefore, we describe the reprogramming of the central carbon metabolism associated with the IDH1 mutation in a genetically engineered mouse model which reflects the tumor biology encountered in glioma patients.

11.
Br J Cancer ; 122(11): 1580-1589, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32291392

RESUMO

Isocitrate dehydrogenase (IDH) enzymes catalyse the oxidative decarboxylation of isocitrate and therefore play key roles in the Krebs cycle and cellular homoeostasis. Major advances in cancer genetics over the past decade have revealed that the genes encoding IDHs are frequently mutated in a variety of human malignancies, including gliomas, acute myeloid leukaemia, cholangiocarcinoma, chondrosarcoma and thyroid carcinoma. A series of seminal studies further elucidated the biological impact of the IDH mutation and uncovered the potential role of IDH mutants in oncogenesis. Notably, the neomorphic activity of the IDH mutants establishes distinctive patterns in cancer metabolism, epigenetic shift and therapy resistance. Novel molecular targeting approaches have been developed to improve the efficacy of therapeutics against IDH-mutated cancers. Here we provide an overview of the latest findings in IDH-mutated human malignancies, with a focus on glioma, discussing unique biological signatures and proceedings in translational research.


Assuntos
Neoplasias Encefálicas/genética , Glioma/genética , Isocitrato Desidrogenase/genética , Animais , Transformação Celular Neoplásica/genética , Humanos , Mutação
12.
Cancers (Basel) ; 12(4)2020 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-32224866

RESUMO

Isocitrate dehydrogenase (IDH) mutations are common genetic abnormalities in lower grade gliomas. The neomorphic enzyme activity of IDH mutants leads to tumor formation through epigenetic alteration, dysfunction of dioxygenases, and metabolic reprogramming. However, it remains elusive as to how IDH mutants regulate the pathways associated with oncogenic transformation and aggressiveness. In the present study, by using unbiased transcriptomic profiling, we showed that IDH1 mutations result in substantial changes in the gene sets that govern cellular motility, chemotaxis, and invasion. Mechanistically, rapamycin-insensitive companion of mammalian target of rapamycin (Rictor)/Ras-related C3 botulinum toxin substrate 1 (Rac1) signaling plays an essential role in the motility and proliferation of IDH1-mutated cells by prompting cytoskeleton reorganization, lamellipodia formation, and enhanced endocytosis. Targeting the Rictor/Rac1 pathway suppresses IDH1-mutated cells by limiting endocytosis and cell proliferation. Overall, our findings indicate a novel metabolic reprogramming mechanism of IDH1-mutated cells by exploiting metabolites from the extracellular milieu. Targeting the Rictor/Rac1 pathway could be an alternative therapeutic strategy for IDH1-mutated malignancies.

13.
Cell Rep ; 31(3): 107521, 2020 04 21.
Artigo em Inglês | MEDLINE | ID: mdl-32320667

RESUMO

Recent studies have revealed an essential role for embryonic cortical development in the pathophysiology of neurodevelopmental disorders, including autism spectrum disorder (ASD). However, the genetic basis and underlying mechanisms remain unclear. Here, we generate mutant human embryonic stem cell lines (Mut hESCs) carrying an NR2F1-R112K mutation that has been identified in a patient with ASD features and investigate their neurodevelopmental alterations. Mut hESCs overproduce ventral telencephalic neuron progenitors (ventral NPCs) and underproduce dorsal NPCs, causing the imbalance of excitatory/inhibitory neurons. These alterations can be mainly attributed to the aberrantly activated Hedgehog signaling pathway. Moreover, the corresponding Nr2f1 point-mutant mice display a similar excitatory/inhibitory neuron imbalance and abnormal behaviors. Antagonizing the increased inhibitory synaptic transmission partially alleviates their behavioral deficits. Together, our results suggest that the NR2F1-dependent imbalance of excitatory/inhibitory neuron differentiation caused by the activated Hedgehog pathway is one precursor of neurodevelopmental disorders and may enlighten the therapeutic approaches.


Assuntos
Transtorno do Espectro Autista/metabolismo , Fator I de Transcrição COUP/metabolismo , Proteínas Hedgehog/metabolismo , Transtornos do Neurodesenvolvimento/metabolismo , Neurônios/metabolismo , Neurônios/patologia , Mutação Puntual , Animais , Transtorno do Espectro Autista/genética , Fator I de Transcrição COUP/genética , Diferenciação Celular/fisiologia , Humanos , Camundongos , Transtornos do Neurodesenvolvimento/genética , Transtornos do Neurodesenvolvimento/patologia , Transdução de Sinais
14.
Neuro Oncol ; 22(4): 480-492, 2020 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-31665443

RESUMO

BACKGROUND: Early detection of increased aggressiveness of brain tumors is a major challenge in the field of neuro-oncology because of the inability of traditional imaging to uncover it. Isocitrate dehydrogenase (IDH)-mutant gliomas represent an ideal model system to study the molecular mechanisms associated with tumorigenicity because they appear indolent and non-glycolytic initially, but eventually a subset progresses toward secondary glioblastoma with a Warburg-like phenotype. The mechanisms and molecular features associated with this transformation are poorly understood. METHODS: We employed model systems for IDH1 mutant (IDH1mut) gliomas with different growth and proliferation rates in vivo and in vitro. We described the metabolome, transcriptome, and epigenome of these models in order to understand the link between their metabolism and the tumor biology. To verify whether this metabolic reprogramming occurs in the clinic, we analyzed data from The Cancer Genome Atlas. RESULTS: We reveal that the aggressive glioma models have lost DNA methylation in the promoters of glycolytic enzymes, especially lactate dehydrogenase A (LDHA), and have increased mRNA and metabolite levels compared with the indolent model. We find that the acquisition of the high glycolytic phenotype occurs at the glioma cytosine-phosphate-guanine island methylator phenotype (G-CIMP)-high molecular subtype in patients and is associated with the worst outcome. CONCLUSION: We propose very early monitoring of lactate levels as a biomarker of metabolic reprogramming and tumor aggressiveness.


Assuntos
Neoplasias Encefálicas , Glioma , Neoplasias Encefálicas/genética , Metilação de DNA , Glioma/genética , Guanina , Humanos , Isocitrato Desidrogenase/genética , Isocitrato Desidrogenase/metabolismo , Mutação , Fenótipo
15.
Cell Rep ; 28(3): 682-697.e7, 2019 07 16.
Artigo em Inglês | MEDLINE | ID: mdl-31315047

RESUMO

Dysfunction of noradrenergic (NA) neurons is associated with a number of neuronal disorders. Diverse neuronal subtypes can be generated by direct reprogramming. However, it is still unknown how to convert non-neuronal cells into NA neurons. Here, we show that seven transcription factors (TFs) (Ascl1, Phox2b, AP-2α, Gata3, Hand2, Nurr1, and Phox2a) are able to convert astrocytes and fibroblasts into induced NA (iNA) neurons. These iNA neurons express the genes required for the biosynthesis, release, and re-uptake of noradrenaline. Moreover, iNA neurons fire action potentials, receive synaptic inputs, and control the beating rate of co-cultured ventricular myocytes. Furthermore, iNA neurons survive and integrate into neural circuits after transplantation. Last, human fibroblasts can be converted into functional iNA neurons as well. Together, iNA neurons are generated by direct reprogramming, and they could be potentially useful for disease modeling and cell-based therapies.


Assuntos
Neurônios Adrenérgicos/citologia , Neurônios Adrenérgicos/metabolismo , Astrócitos/citologia , Reprogramação Celular/genética , Fibroblastos/citologia , Potenciais de Ação/fisiologia , Neurônios Adrenérgicos/ultraestrutura , Animais , Astrócitos/metabolismo , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Linhagem Celular , Transplante de Células , Fibroblastos/metabolismo , Fator de Transcrição GATA3/genética , Fator de Transcrição GATA3/metabolismo , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Células Musculares/metabolismo , Vias Neurais/metabolismo , Vias Neurais/fisiologia , Norepinefrina/biossíntese , Norepinefrina/metabolismo , Membro 2 do Grupo A da Subfamília 4 de Receptores Nucleares/genética , Membro 2 do Grupo A da Subfamília 4 de Receptores Nucleares/metabolismo , Sinapses/metabolismo , Sinapses/ultraestrutura , Fator de Transcrição AP-2/genética , Fator de Transcrição AP-2/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Transcriptoma/genética
16.
Cell Biosci ; 9: 45, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31183074

RESUMO

BACKGROUND: Natural products from herbal medicines have long been investigated for their potentials as cancer therapeutics. Besides the development of several herbal medicine-derived anti-cancer agents, such as paclitaxel, vincristine and podophyllotoxin, many recent laboratory findings demonstrated that brusatol, a quassinoid from the seeds of Brucea sumatrana, exhibits potent tumor suppressing effect with improved disease outcome. Our recent finding further demonstrated that brusatol synergizes with the intrinsic metabolic burden in cancer cells. MAIN BODY: Here, we summarized the recent investigations of brusatol as an experimental therapeutic for human malignancies, such as leukemia, lung cancer, pancreatic cancer and brain tumor. We also discussed the molecular target brusatol, with a focus on the Nuclear factor erythroid 2-related factor 2 (NRF2)-guided gene transcription, as well as glutathione de novo synthesis. Further, we discussed the challenges and future applications of brusatol for cancer therapy. CONCLUSION: In conclusion, we believe increasing evidences have shown the value of brusatol as a novel strategy for cancer treatment, which may indicate future drug development and clinical translation.

18.
EBioMedicine ; 44: 138-149, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-31105033

RESUMO

BACKGROUND: The influence of amyloid protein-binding protein 2 (APPBP2) on lung cancer is unknown. METHODS: The function and mechanisms of APPBP2 were investigated in the NSCLC cell lines A549 and H1299. The ectopic expression of APPBP2, PPM1D and SPOP in NSCLS were examined in samples collected from ten pairs of human lung adenocarcinoma cancer tissues and adjacent normal lung tissues. shRNA vector was used for APPBP2 knockdown. Quantitative PCR and western blot assays quantified the mRNA and protein level of APPBP2, PPM1D, and SPOP. Cell proliferation was measured with BrdU, MTT, colony formation assays, and xenograft tumour growth experiments. Cell migration and invasion were analysed with transwell and wound healing assays. Co-Immunoprecipitation assay detected protein-protein interactions. FINDINGS: APPBP2 was upregulated in NSCLC tissues. Silencing APPBP2 in A549 and H1299 cells resulted in the inhibition of cell proliferation, migration, and invasion, enhancement of apoptosis, and a significant decrease in the expression of PPM1D and SPOP. Overexpression of PPM1D and SPOP attenuated the APPBP2-knockdown inhibition of NSCLC cells. Co-IP assay showed that PPM1D interacted with APPBP2. INTERPRETATION: The expression level of APPBP2 positively correlates with NSCLC cell proliferation, migration, and invasiveness. APPBP2 contributes to NSCLC progression through regulating the PPM1D and SPOP signalling pathway. This novel molecular mechanism, underlying NSCLC oncogenesis, suggests APPBP2 is a potential target for diagnosis and therapeutic intervention in NSCLC. FUND: Key Program of Natural Science Research of Higher Education of Anhui Province (No. KJ2017A241), the National Natural Science Foundation of China (No. 81772493).

19.
J Neurosci ; 35(25): 9336-55, 2015 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-26109658

RESUMO

In vivo induction of non-neuronal cells into neurons by transcription factors offers potential therapeutic approaches for neural regeneration. Although generation of induced neuronal (iN) cells in vitro and in vivo has been reported, whether iN cells can be fully integrated into existing circuits remains unclear. Here we show that expression of achaete-scute complex homolog-like 1 (Ascl1) alone is sufficient to convert dorsal midbrain astrocytes of mice into functional iN cells in vitro and in vivo. Specific expression of Ascl1 in astrocytes by infection with GFAP-adeno-associated virus (AAV) vector converts astrocytes in dorsal midbrain, striatum, and somatosensory cortex of postnatal and adult mice into functional neurons in vivo. These iN cells mature progressively, exhibiting neuronal morphology and markers, action potentials, and synaptic inputs from and output to existing neurons. Thus, a single transcription factor, Ascl1, is sufficient to convert brain astrocytes into functional neurons, and GFAP-AAV is an efficient vector for generating iN cells from astrocytes in vivo.


Assuntos
Astrócitos/citologia , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Transdiferenciação Celular/fisiologia , Técnicas de Transferência de Genes , Mesencéfalo/metabolismo , Neurônios/citologia , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Células Cultivadas , Dependovirus , Citometria de Fluxo , Vetores Genéticos , Imuno-Histoquímica , Mesencéfalo/citologia , Camundongos , Camundongos Mutantes , Técnicas de Cultura de Órgãos , Técnicas de Patch-Clamp , Reação em Cadeia da Polimerase em Tempo Real , Transdução Genética
20.
Int J Radiat Oncol Biol Phys ; 53(5): 1160-4, 2002 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-12128116

RESUMO

PURPOSE: Clinical symptomatic late injury to the rectal wall occurs in about one-third of patients with prostate cancer treated with external beam irradiation. Reducing the physical dose to the anterior rectal wall without a similar reduction in the posterior peripheral zone is difficult because of the proximity of the prostate to the anterior rectal wall. On the basis of our previous observations in an animal model that intrarectal application of amifostine resulted in very high concentrations of amifostine and its active metabolite WR-1065 in the rectal wall, a Phase I dose-escalation clinical trial was undertaken. METHODS AND MATERIALS: Twenty-nine patients with localized prostate cancer were accrued. Eligibility criteria included histologically confirmed adenocarcinoma, Karnofsky performance status >or=70, and no pelvic lymphadenopathy or distant metastases. The total dose to the prostate was 70.2 Gy in 20 patients and 73.8 Gy in 9 patients. Therapy was delivered using a 4-field technique with three-dimensional conformal planning. Amifostine was administered intrarectally as an aqueous solution 30 min before irradiation on the first 15 days of therapy. Amifostine was escalated in cohorts from 500 to 2500 mg. Proctoscopy was performed before therapy and at 9 months after completion. Most patients underwent repeat proctoscopy at 18 months. On Days 1 and 10 of radiotherapy, serum samples were collected for pharmacokinetic studies. The clinical symptoms (Radiation Therapy Oncology Group scale) and a proctoscopy score were assessed during follow-up. RESULTS: All patients completed therapy with no amifostine-related toxicity at any dose level. The application was feasible and well tolerated. No substantial systemic absorption occurred. With a median follow-up of 26 months, 9 patients (33%) developed rectal bleeding (8 Grade 1, 1 Grade 2). At 9 months, 16 and 3 patients developed Grade 1 and Grade 2 telangiectasia, respectively. This was mostly confined to the anterior rectal wall. No visible mucosal edema, ulcerations, or strictures were noted. No significant differences were found between the proctoscopy findings at 9 and 18 months. Four patients (14%) developed symptoms suggestive of radiation damage that, on sigmoidoscopy, proved to be secondary to unrelated processes. These included preexisting nonspecific proctitis (n = 1), diverticular disease of the sigmoid colon (n = 1), rectal polyp (n = 1), and ulcerative colitis (n = 1). Symptoms developed significantly more often in patients receiving 500-1000 mg than in patients receiving 1500-2500 mg amifostine (7 [50%] of 14 vs. 2 [15%] of 13, p = 0.0325, one-sided chi-square test). CONCLUSION: Intrarectal application of amifostine is feasible and well tolerated. Systemic absorption of amifostine and its metabolites is negligible, and close monitoring of patients is not required with rectal administration. Proctoscopy is superior to symptom score as a method of assessing radiation damage of the rectal wall. The preliminary efficacy data are encouraging, and further clinical studies are warranted.


Assuntos
Adenocarcinoma/radioterapia , Neoplasias da Próstata/radioterapia , Adenocarcinoma/tratamento farmacológico , Administração Tópica , Amifostina/administração & dosagem , Amifostina/farmacologia , Análise de Variância , Relação Dose-Resposta a Droga , Relação Dose-Resposta à Radiação , Humanos , Mucosa Intestinal/metabolismo , Masculino , Mercaptoetilaminas/farmacologia , Análise Multivariada , Neoplasias da Próstata/tratamento farmacológico , Neoplasias da Próstata/metabolismo , Protetores contra Radiação/farmacologia , Reto/patologia , Reto/efeitos da radiação , Telangiectasia/patologia , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...