Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Immunol Lett ; 173: 7-20, 2016 05.
Artigo em Inglês | MEDLINE | ID: mdl-26969350

RESUMO

Granulocyte-macrophage colony-stimulating factor (GM-CSF) is a multifaceted hematopoietic cytokine and the culture of mouse bone marrow with GM-CSF produces a variety of myeloid cells including granulocytes, macrophages, and dendritic cells. In the present study, we cultured mouse splenocytes with GM-CSF and examined the changes in hematopoietic cell populations over a week. Most of the splenic hematopoietic cells disappeared significantly from culture within 6days with or without the presence of GM-CSF. Among the splenic granulocyte populations, only eosinophils fully survived throughout the culture with GM-CSF for more than a week. During 10days of culture with GM-CSF, splenic eosinophils maintained their morphology as well as most of their surface molecules at high levels, including CCR3 and Siglec F. Meanwhile, the expression of mRNAs encoding major basic protein-1 (MBP-1) and eosinophil peroxidase (EPO), two major eosinophil-derived granule proteins, was diminished significantly from the cultured eosinophils. EPO assays also revealed that eosinophils in culture for more than 5days retained 30% or less EPO activity compared to those in uncultured splenocytes. In contrast, culture of splenocytes with GM-CSF did not change the capacity of eosinophils to migrate in response to eotaxin-1. Our results indicate that mouse splenic eosinophils are effectively cultured for lengthy periods while their expression of eosinophil-derived granule proteins is specifically suppressed. The relevance of these findings to eosinophilic inflammatory response is discussed.


Assuntos
Eosinófilos/imunologia , Fator Estimulador de Colônias de Granulócitos e Macrófagos/metabolismo , Baço/imunologia , Animais , Diferenciação Celular , Movimento Celular , Sobrevivência Celular , Células Cultivadas , Quimiocina CCL11/imunologia , Grânulos Citoplasmáticos/metabolismo , Proteína Básica Maior de Eosinófilos/genética , Proteína Básica Maior de Eosinófilos/metabolismo , Peroxidase de Eosinófilo/genética , Peroxidase de Eosinófilo/metabolismo , Regulação da Expressão Gênica , Hematopoese , Camundongos , Camundongos Endogâmicos C57BL , Receptores CCR3/metabolismo , Lectina 1 Semelhante a Ig de Ligação ao Ácido Siálico/metabolismo , Baço/patologia
2.
Immune Netw ; 16(1): 61-74, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26937233

RESUMO

Dendritic cells (DCs) are professional antigen-presenting cells that sample their environment and present antigens to naïve T lymphocytes for the subsequent antigen-specific immune responses. DCs exist in a range of distinct subpopulations including plasmacytoid DCs (pDCs) and classical DCs (cDCs), with the latter consisting of the cDC1 and cDC2 lineages. Although the roles of DC-specific transcription factors across the DC subsets have become understood, the posttranscriptional mechanisms that regulate DC development are yet to be elucidated. MicroRNAs (miRNAs) are pivotal posttranscriptional regulators of gene expression in a myriad of biological processes, but their contribution to the immune system is just beginning to surface. In this study, our in-house probe collection was screened to identify miRNAs possibly involved in DC development and function by targeting the transcripts of relevant mouse transcription factors. Examination of DC subsets from the culture of mouse bone marrow with Flt3 ligand identified high expression of miR-124 which was able to target the transcript of TCF4, a transcription factor critical for the development and homeostasis of pDCs. Further expression profiling of mouse DC subsets isolated from in vitro culture as well as via ex vivo purification demonstrated that miR-124 was outstandingly expressed in CD24(+) cDC1 cells compared to in pDCs and CD172α(+) cDC2 cells. These results imply that miR-124 is likely involved in the processes of DC subset development by posttranscriptional regulation of a transcription factor(s).

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...