Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Biol Macromol ; 254(Pt 3): 127953, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37951433

RESUMO

Colletotrichum higginsianum causes anthracnose disease in brassicas. The availability of the C. higginsianum genome has paved the way for the genome-wide exploration of genes associated with virulence/pathogenicity. However, delimiting the biological functions of these genes remains an arduous task due to the recalcitrance of C. higginsianum to genetic manipulations. Here, we report a CRISPR/Cas9-based system that can knock out the genes in C. higginsianum with a staggering 100% homologous recombination frequency (HRF). The system comprises two vectors: pCas9-Ch_tRp-sgRNA, in which a C. higginsianum glutaminyl-tRNA drives the expression of sgRNA, and pCE-Zero-HPT carrying a donor DNA cassette containing the marker gene HPT flanked by homology arms. Upon co-transformation of the C. higginsianum protoplasts, pCas9-Ch_tRp-sgRNA causes a DNA double-strand break in the targeted gene, followed by homology-directed replacement of the gene with HPT by pCE-Zero-HPT, thereby generating loss-of-function mutants. Using the system, we generated the knockout mutants of two effector candidates (ChBas3 and OBR06881) with a 100% HRF. Interestingly, the ΔChBas3 and ΔOBR06881 mutants did not seem to affect the C. higginsianum infection of Arabidopsis thaliana. Altogether, the CRISPR/Cas9 system developed in the study enables the targeted deletion of genes, including effectors, in C. higginsianum, thus determining their biological functions.


Assuntos
Colletotrichum , RNA Guia de Sistemas CRISPR-Cas , Sistemas CRISPR-Cas/genética , DNA/metabolismo
2.
J Fungi (Basel) ; 8(5)2022 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-35628795

RESUMO

Maize (Zea mays), also called corn, is one of the top three staple food crops worldwide and is also utilized as feed (e.g., feed grain and silage) and a source of biofuel (e.g., bioethanol). Maize production is hampered by a myriad of factors, including although not limited to fungal diseases, which reduce grain yield and downgrade kernel quality. One such disease is anthracnose leaf blight and stalk rot (ALB and ASR) caused by the hemibiotrophic fungal pathogen Colletotrichum graminicola. The pathogen deploys a biphasic infection strategy to colonize susceptible maize genotypes, comprising latent (symptomless) biotrophic and destructive (symptomatic) necrotrophic phases. However, the resistant maize genotypes restrict the C. graminicola infection and in planta fungal proliferation during the biotrophic phase of the infection. Some studies on the inheritance of ASR resistance in the populations derived from biparental resistant and susceptible genotypes reveal that anthracnose is likely a gene-for-gene disease in which the resistant maize genotypes and C. graminicola recognize each other by their matching pairs of nucleotide-binding leucine-rich repeat resistance (NLR) proteins (whose coding genes are localized in disease QTL) and effectors (1-2 effectors/NLR) during the biotrophic phase of infection. The Z. mays genome encodes approximately 144 NLRs, two of which, RCg1 and RCg1b, located on chromosome 4, were cloned and functionally validated for their role in ASR resistance. Here, we discuss the genetic architecture of anthracnose resistance in the resistant maize genotypes, i.e., disease QTL and underlying resistance genes. In addition, this review also highlights the disease cycle of C. graminicola and molecular factors (e.g., virulence/pathogenicity factors such as effectors and secondary metabolites) that contribute to the pathogen's virulence on maize. A detailed understanding of molecular genetics underlying the maize-C. graminicola interaction will help devise effective management strategies against ALB and ASR.

3.
Plant Dis ; 2022 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-35253492

RESUMO

Maize (Zea mays L.) is a staple food crop worldwide. In July 2021, gray leaf blight was observed on maize leaves in a field located in Panjin (41°7'11.98" N, 122°4'14.57" E), Liaoning Province, China. Nearly 5% of the maize plants were affected in the field. The leaves of the affected plants showed oval to oblong, gray, sunken lesions with yellow or tan margins. The lesions were scattered all over the leaf surface; however, they were absent on the stalks and other parts of the affected plants. To isolate the pathogen, leaf discs (1.25 mm2) excised from the blight lesions were surface-sterilized with 70% ethanol for 30 seconds, followed by 20% NaOCl for 2 minutes and finally rinsed three times with sterilized water. The discs were cultured on potato dextrose agar (PDA) plates supplemented with streptomycin (100 mg/L) and incubated at 25oC under a 12-h photoperiod for 7 days. Six single spore isolates (two per sampled infected leaf) were purified from the PDA culture plates. The fungal colonies of three selected isolates (one per sampled infected leaf; Pj-1, Pj-2, and Pj-3) were dark brown on the PDA plates and devoid of aerial hyphae; all three isolates grew 11 mm/day on the PDA plates. The number of conidia produced by the isolates on the 6-cm PDA plates 7 days after incubation was ranged from 160 x 108 to 208 x 108 (n = 36). Conidia were hyaline, single-celled and ellipsoidal (3.35-3.56 µm [width] x 6.47-6.70 [length] µm; n = 36). To identify the pathogen, four loci, i.e., 28S subunit (large subunit [LSU]) of the nuclear ribosomal (nr) DNA, internal transcribed spacer (ITS) region (ITS1, 5.8S subunit of nrDNA, and ITS2), the second-largest subunit of RNA polymerase II (rpb2) and ß-tubulin (tub2) were amplified using the primer sets described in the study by Chen el al. 2015. BLASTn search against GenBank revealed that the four amplicon sequences originating from Pj-1, Pj-2, and Pj-3 showed 99-100% homology to the type strain CBS 528.66 of D. glomerata. A phylogenetic tree deduced from a maximum likelihood analysis of a concatenated MUSCLE-based alignment of LSU, ITS region, rpb2, and tub2 sequences of 12 isolates/strains showed that the Pj isolates clustered together with CBS 528.66, along with other D. glomerata isolates/strains, with a high bootstrap support value (i.e., 99). Based on both morphological characteristics and molecular phylogeny, Pj-1, Pj-2, and Pj-3 were identified as the D. glomerata isolates. Since the amplicon sequences of the three isolates were identical, only Pj-2 sequences were deposited in GenBank with accession numbers OM372474 (LSU), OK485138 (ITS), OM406188 (rpb2), and OK485135 (tub2). To confirm pathogenicity, 14-day-old plants (V3 growth stage) of a maize cultivar P178 were spray-inoculated with the Pj-2 conidia (1 x 107 conidia/mL) in a growth chamber. The inoculated leaves exhibited typical gray leaf blight lesions (similar to those detected in the maize field) 7 days post-inoculation at 25oC and 95-100% humidity under a 12-h photoperiod, whereas the leaves spray-inoculated with sterilized water remained healthy. The pathogenicity assay was repeated three times; the pathogen was re-isolated from the inoculated leaves each time and confirmed by the morphological characteristics and the molecular phylogeny based on the four loci to be D. glomerata, fulfilling Koch's postulates. This first report of D. glomerata causing Didymella leaf blight on maize will help develop robust disease management strategies against this emerging fungal pathogen.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...