Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Colloid Interface Sci ; 576: 505-513, 2020 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-32512403

RESUMO

The electrolyte additives of potassium ferricyanide and potassium persulfate can ensure that CoO-supercapacitors achieve a fast charge/slow discharge and long cycling stability. The redox couple of Fe(CN)63-/Fe(CN)64- can induce S2O82- to produce the sulfate radical ( [Formula: see text] ). Strong oxidizing species, including S2O82-, Fe(CN)63- and [Formula: see text] , can accelerate oxidation of the CoO electrode surface from Co2+ to Co3+ in the charge process. The additives can achieve a good synergistic effect on accelerating CoO oxidation during the charge process. In a three-electrode cell, a CoO electrode with electrolyte additives achieves a fast-charge and slow-discharge time of 939 s and 1699 s at a current density of 1 A g-1, respectively. The capacitance retention can be maintained at 84.5% after 10,000 cycles at a current density of 5 A g-1. As a supercapacitor, the device can achieve a fast-charge and slow-discharge time of 156 s and 191 s at a current density of 1 A g-1, respectively. The capacitance retention can be maintained at 85.5% after 10,000 cycles at a current density of 5 A g-1.

2.
Nanomaterials (Basel) ; 9(8)2019 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-31405218

RESUMO

Photo-Fenton degradation of pollutants in wastewater is an ideal choice for large scale practical applications. Herein, two-dimensional (2D) in-plane CuS/Bi2WO6 p-n heterostructures have been successfully constructed by an in situ assembly strategy and characterized using XRD, XPS, SEM/TEM, EDX, UV-Vis-DRS, PL, TR-PL, ESR, and VB-XPS techniques. The XPS and the TEM results confirm the formation of CuS/Bi2WO6 heterostructures. The as-constructed CuS/Bi2WO6 showed excellent absorption in visible region and superior charge carrier separation efficiency due to the formation of a type-II heterojunctions. Under visible light irradiation, 0.1% CuS/Bi2WO6 heterostructure exhibited the best photo-Fenton-like catalytic performance. The degradation efficiency of Rhodamine B (RhB, 20 mg·L-1) can reach nearly 100% within 25 min, the apparent rate constant (kapp/min-1) is approximately 40.06 and 3.87 times higher than that of pure CuS and Bi2WO6, respectively. The degradation efficiency of tetracycline hydrochloride (TC-HCl, 40mg·L-1) can reach 73% in 50 min by employing 0.1% CuS/Bi2WO6 heterostructure as a photo-Fenton-like catalyst. The promoted photo-Fenton catalytic activity of CuS/Bi2WO6 p-n heterostructures is partly ascribed to its low carriers recombination rate. Importantly, CuS in CuS/Bi2WO6 heterostructures is conducive to the formation of heterogeneous photo-Fenton catalytic system, in which Bi2WO6 provides a strong reaction site for CuS to avoid the loss of Cu2+ in Fenton reaction, resulting in its excellent stability and reusability. The possible photo-Fenton-like catalytic degradation mechanism of RhB and TC-HCl was also elucidated on the basis of energy band structure analysis and radical scavenger experiments. The present study provides strong evidence for CuS/Bi2WO6 heterostructures to be used as promising candidates for photo-Fenton treatment of organic pollutants.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...