Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Oxid Med Cell Longev ; 2020: 1234059, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32774664

RESUMO

With aging, the kidney undergoes inexorable and progressive changes in structural and functional performance. These aging-related alterations are more obvious and serious in diabetes mellitus (DM). Renal accelerated aging under DM conditions is associated with multiple stresses such as accumulation of advanced glycation end products (AGEs), hypertension, oxidative stress, and inflammation. The main hallmarks of cellular senescence in diabetic kidneys include cyclin-dependent kinase inhibitors, telomere shortening, and diabetic nephropathy-associated secretory phenotype. Lysosome-dependent autophagy and antiaging proteins Klotho and Sirt1 play a fundamental role in the accelerated aging of kidneys in DM, among which the autophagy-lysosome system is the convergent mechanism of the multiple antiaging pathways involved in renal aging under DM conditions. Metformin and the inhibitor of sodium-glucose cotransporter 2 are recommended due to their antiaging effects independent of antihyperglycemia, besides angiotensin-converting enzyme inhibitors/angiotensin receptor blockers. Additionally, diet intervention including low protein and low AGEs with antioxidants are suggested for patients with diabetic nephropathy (DN). However, their long-term benefits still need further study. Exploring the interactive relationships among antiaging protein Klotho, Sirt1, and autophagy-lysosome system may provide insight into better satisfying the urgent medical needs of elderly patients with aging-related DN.


Assuntos
Diabetes Mellitus/fisiopatologia , Nefropatias Diabéticas/fisiopatologia , Produtos Finais de Glicação Avançada/efeitos adversos , Hipertensão/fisiopatologia , Inflamação/fisiopatologia , Estresse Oxidativo/fisiologia , Insuficiência Renal Crônica/fisiopatologia , Fatores Etários , Idoso , Animais , Feminino , Humanos , Masculino , Camundongos
2.
Biomed Pharmacother ; 121: 109599, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31707345

RESUMO

Diabetic nephropathy (DN) is a common but intractable diabetic microvascular complication. Tripterygium, a Chinses herb, has been proven to be effective for DN treatment. In this review, the efficacy and pharmacological mechanism of tripterygium and its extracts on DN is elucidated. Tripterygium and its extracts could effectively reduce urine protein and protect renal function. Its pharmacological mechanism involves anti-inflammation, anti-oxidation, anti-glomerulosclerosis and anti-fibrosis, which is achieved by balancing the Th1/Th2 cells, regulating macrophage infiltration, and regulating the following pathways: p38 MAPK, NF-κB, TGF-ß, Wnt/ß-catenin, Akt and Notch1. Although tripterygium and its extracts may result in some adverse effects, including liver-function damage, gastrointestinal reaction, menstrual disorders, and reproductive problems, they are considered good alternative medicines for DN if used with caution and in the proper manner.


Assuntos
Diabetes Mellitus Experimental/tratamento farmacológico , Nefropatias Diabéticas/tratamento farmacológico , Extratos Vegetais/uso terapêutico , Tripterygium , Animais , Ensaios Clínicos como Assunto/métodos , Diabetes Mellitus Experimental/metabolismo , Nefropatias Diabéticas/metabolismo , Humanos , Mediadores da Inflamação/antagonistas & inibidores , Mediadores da Inflamação/metabolismo , Extratos Vegetais/isolamento & purificação , Extratos Vegetais/farmacologia , Resultado do Tratamento
3.
Artigo em Inglês | MEDLINE | ID: mdl-31949466

RESUMO

Chronic kidney disease (CKD) is a worldwide health problem for which effective therapeutic methods are still lacking. Traditional Chinese medicine (TCM) has been indicated as an effective alternative treatment for kidney disease. In this study, a clinically effective therapy, yiqihuoxue (YQHX) formula, was administrated to adenine-induced kidney disease rats for 6 weeks. We found that the adenine rats displayed a significant reduction in renal function as evidenced by the increased levels of serum creatinine (Scr), blood urea nitrogen (BUN), and 24-h urinary albumin level, which were attenuated by the YQHX treatment. The glomerulosclerosis, interstitial fibrosis, arteriolosclerosis, interstitial inflammation, and tubular dilatation were reversed by the YQHX treatment in the adenine rats. Furthermore, the hepatic damage characterized by increased levels of aspartate aminotransferase and alanine aminotransferase and inflammatory cell infiltration was improved by YQHX. In addition, the number of apoptotic cells in the adenine rats was obviously reduced by the YQHX treatment as manifested by the lower expression level of cleaved caspase-3 protein. Moreover, the YQHX treatment downregulated the expression levels of fibronectin, type I collagen, α-smooth muscle actin, and TGF-ß1 in the adenine rats. Furthermore, autophagy was activated by the YQHX treatment, which manifested as an increased LC3-II and Beclin-1 expression levels and a decreased p62 level. In conclusion, the YQHX formula might retard the progression of kidney disease by activating autophagy.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...