Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Adv Mater ; : e2402708, 2024 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-38837440

RESUMO

Emerging intrinsically flexible fully π-conjugated polymers (FπCPs) are a promising functional material for flexible optoelectronics, attributed to their potential interchain interpenetration and entanglement. However, the challenge remains in obtaining elastic-plastic FπCPs with intrinsic robust optoelectronic property and excellent long-term and cycling deformation stability simultaneously for applications in deep-blue flexible polymer light-emitting diodes (PLEDs). This study, demonstrates a series of elastic-plastic FπCPs (P1-P4) with an excellent energy dissipation capacity via side-chain internal plasticization for the ultra-deep-blue flexible PLEDs. First, the freestanding P1 film exhibited a maximum fracture strain of 34.6%. More interestingly, the elastic behavior is observed with a low strain (≤10%), and the stretched film with a high deformation (>10%) attributed to plastic processing revealed the robust capacity to realize energy absorption and release. The elastic-plastic P1 film exhibits outstanding ultra-deep-blue emission, with an efficiency of 56.38%. Subsequently, efficient PLEDs are fabricated with an ultra-deep-blue emission of CIE (0.16, 0.04) and a maximum external quantum efficiency of 1.73%. Finally, stable and efficient ultra-deep-blue electroluminescence are obtained from PLEDs based on stretchable films with different strains and cycling deformations, suggesting excellent elastic-plastic behavior and deformation stability for flexible electronics.

2.
Adv Mater ; 36(19): e2307605, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38349697

RESUMO

Emerging printed large-area polymer light-emitting diodes (PLEDs) are essential for manufacturing flat-panel displays and solid lighting devices. However, it is challenging to obtain large-area and stable ultradeep-blue PLEDs because of the lack of light-emitting conjugated polymers (LCPs) with robust deep-blue emissions, excellent morphological stabilities, and high charging abilities. Here, a novel unsymmetrically substituted polydiarylfluorene (POPSAF) is obtained with stable narrowband emission for large-area printed displays via triphenylamine (TPA) spirofunctionalization of LCPs. POPSAF films show narrowband and stable ultradeep-blue emission with a full width at half maximum (FWHM) of 36 nm, associated with their intrachain excitonic behavior without obvious polaron formation. Compared to controlled poly[4-(octyloxy)-9,9-diphenylfluoren-2,7-diyl]-co-[5-(octyloxy)-9,9-diphenylfluoren-2,7-diyl] (PODPF), excellent charge transport is observed in the POPSAF films because of the intrinsic hole transport ability of the TPA units. Large-area PLEDs are fabricated via blade-coating with an emission area of 9 cm2, which exhibit uniform ultradeep-blue emission with an FWHM of 36 nm and corresponding Commission internationale de l'éclairage (CIE) coordinates of (0.155, 0.072). These findings are attributed to the synergistic effects of robust emission, stable morphology, and printing capacity. Finally, preliminary printed passive matrix (PM) PLED displays with 20 × 20 pixels monochromes are fabricated, confirmed the effectiveness of spirofunctionalization in optoelectronics.

3.
Adv Mater ; 36(18): e2309779, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38237201

RESUMO

Solution-processable organic conjugated molecules (OCMs) consist of a series of aromatic units linked by σ-bonds, which present a relatively freedom intramolecular motion and intermolecular re-arrangement under external stimulation. The cross-linked strategy provides an effective platform to obtain OCMs network, which allows for outstanding optoelectronic, excellent physicochemical properties, and substantial improvement in device fabrication. An unsaturated double carbon-carbon bond (C = C) is universal segment to construct crosslinkable OCMs. In this review, the authors will set C = C cross-linkable units as an example to summarize the development of cross-linkable OCMs for solution-processable optoelectronic applications. First, this review provides a comprehensive overview of the distinctive chemical, physical, and optoelectronic properties arising from the cross-linking strategies employed in OCMs. Second, the methods for probing the C = C cross-linking reaction are also emphasized based on the perturbations of chemical structure and physicochemical property. Third, a series of model C = C cross-linkable units, including styrene, trifluoroethylene, and unsaturated acid ester, are further discussed to design and prepare novel OCMs. Furthermore, a concise overview of the optoelectronic applications associated with this approach is presented, including light-emitting diodes (LEDs), solar cells (SCs), and field-effect transistors (FETs). Lastly, the authors offer a concluding perspective and outlook for the improvement of OCMs and their optoelectronic application via the cross-linking strategy.

4.
Animals (Basel) ; 13(15)2023 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-37570267

RESUMO

The accurate breeding of individual sheep has shown outstanding effectiveness in food quality tracing, prevention of fake insurance claims, etc., for which sheep identification is the key to guaranteeing its high performance. As a promising solution, sheep identification based on sheep face detection has shown potential effectiveness in recent studies. Unfortunately, the performance of sheep face detection has still been a challenge due to diverse background illumination, sheep face angles and scales, etc. In this paper, an effective and lightweight sheep face detection method based on an improved RetinaFace algorithm is proposed. In order to achieve an accurate and real-time detection of sheep faces on actual sheep farms, the original RetinaFace algorithm is improved in two main aspects. Firstly, to accelerate the speed of multi-scale sheep face feature extraction, an improved MobileNetV3-large with a switchable atrous convolution is optimally used as the backbone network of the proposed algorithm. Secondly, the channel and spatial attention modules are added into the original detector module to highlight important facial features of the sheep. This helps obtain more discriminative sheep face features to mitigate against the challenges of diverse face angles and scale in sheep. The experimental results on our collected real-world scenarios have shown that the proposed method outperforms others with an F1score of 95.25%, an average precision of 96.00%, a model size of 13.20 M, an average processing time of 26.83 ms, and a parameter of 3.20 M.

5.
Animals (Basel) ; 13(14)2023 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-37508118

RESUMO

Habitat loss and human threats are putting the marbled polecat (Vormela peregusna) on the brink of extinction. Numerous recent studies have found that climate change will further deteriorate the living environment of endangered species, leading to their eventual extinction. In this study, we used the results of infrared camera surveys in China and worldwide distribution data to construct an ensemble model consisting of 10 commonly used ecological niche models to specify potential suitable habitat areas for V. peregusna under current conditions with similar environments to the sighting record sites. Changes in the suitable habitat for V. peregusna under future climate change scenarios were simulated using mid-century (2050s) and the end of the century (2090s) climate scenarios provided by the Coupled Model Intercomparison Project Phase 6 (CMIP6). We evaluated the accuracy of the model to obtain the environmental probability values (cutoff) of the V. peregusna distribution, the current distribution of suitable habitats, and future changes in moderately and highly suitable habitat areas. The results showed that the general linear model (GLM) was the best single model for predicting suitable habitats for V. peregusna, and the kappa coefficient, area under the curve (AUC), and true skill statistic (TSS) of the ensemble model all exceeded 0.9, reflecting greater accuracy and stability than single models. Under the current conditions, the area of suitable habitat for V. peregusna reached 3935.92 × 104 km2, suggesting a wide distribution range. In the future, climate change is predicted to severely affect the distribution of V. peregusna and substantially reduce the area of suitable habitats for the species, with 11.91 to 33.55% of moderately and highly suitable habitat areas no longer suitable for the survival of V. peregusna. This shift poses an extremely serious challenge to the conservation of this species. We suggest that attention be given to this problem in Europe, especially the countries surrounding the Black Sea, Asia, China, and Mongolia, and that measures be taken, such as regular monitoring and designating protected areas for the conservation of vulnerable animals.

6.
Light Sci Appl ; 12(1): 30, 2023 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-36720850

RESUMO

Doping and blending strategies are crucial means to precisely control the excited states and energy level in conjugated molecular systems. However, effective models and platforms are rarely proposed to systematically explore the effects of the formation of trapped doped centers on heterogeneous structures, energy level and ultrafast photophysical process. Herein, for deeply understanding the impact of molecular doping in film energy levels and photoexcitation dynamics, we set a supramolecular N-B coordination composed by the conjugated molecules of pyridine functionalized diarylfluorene (host material), named as ODPF-Phpy and ODPF-(Phpy)2, and the molecule of tris(perfluorophenyl)borane (BCF) (guest material). The generation of the molecular-level coordination bond increased the binding energy of N atoms and tuned the band-gap, leading to a new fluorescent emission center with longer excitation wavelength and emission wavelength. The intermolecular Förster resonance energy transfer (FRET) in blending films make it present inconsistent fluorescent behaviors compared to that in solution. The charge transfer (CT) state of N-B coordinated compounds and the changed dielectric constant of blending films resulted in a large PL spectra red-shift with the increased dopant ratio, causing a wide-tunable fluorescent color. The excited state behaviors of two compounds in blending system was further investigated by the transient absorption (TA) spectroscopy. Finally, we found supramolecular coordination blending can effectively improve the films' photoluminescence quantum yield (PLQY) and conductivity. We believe this exploration in the internal coordination mechanisms would deepen the insights about doped semiconductors and is helpful in developing novel high-efficient fluorescent systems.

8.
Sensors (Basel) ; 20(24)2020 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-33339364

RESUMO

Prolonging the network lifetime is one of the fundamental requirements in wireless sensor networks (WSNs). Sensor node clustering is a very popular energy conservation strategy in WSNs, allowing to achieve energy efficiency, low latency, and scalability. According to this strategy, sensor nodes are grouped into several clusters, and one sensor node in each cluster is assigned to be a cluster head (CH). The responsibility of each CH is to aggregate data from the other sensor nodes within its cluster and send these data to the sink. However, the distribution of sensor nodes in the sensing region is often non-uniform, which may lead to an unbalanced number of sensor nodes between clusters and thus unbalanced energy consumption between CHs. This, in turn, may result in a reduced network lifetime. Furthermore, a different number of clusters lead to a different quality of service of a WSN system. To address the problems of unbalanced number of sensor nodes between clusters and selecting an optimal number of clusters, this study proposes an energy-balanced cluster-routing protocol (EBCRP) based on particle swarm optimization (PSO) with five mutation operators for WSNs. The five mutation operators are specially proposed to improve the performance of PSO in optimizing sensor node clustering. A rotation CH selection scheme based on the highest residual energy is used to dynamically select a CH for each cluster in each round. Simulation results show that the proposed EBCRP method performs well in balancing energy consumption and prolonging the network lifetime.

9.
Research (Wash D C) ; 2020: 3405826, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33083787

RESUMO

The intrinsically rigid and limited strain of most conjugated polymers has encouraged us to optimize the extensible properties of conjugated polymers. Herein, learning from the hydrogen bonds in glucose, which were facilitated to the toughness enhancement of cellulose, we introduced interchain hydrogen bonds to polydiarylfluorene by amide-containing side chains. Through tuning the copolymerization ratio, we systematically investigated their influence on the hierarchical condensed structures, rheology behavior, tensile performances, and optoelectronic properties of conjugated polymers. Compared to the reference copolymers with a low ratio of amide units, copolymers with 30% and 40% amide units present a feature of the shear-thinning process that resembled the non-Newtonian fluid, which was enabled by the interchain dynamic hydrogen bonds. Besides, we developed a practical and universal method for measuring the intrinsic mechanical properties of conjugated polymers. We demonstrated the significant impact of hydrogen bonds in solution gelation, material crystallization, and thin film stretchability. Impressively, the breaking elongation for P4 was even up to ~30%, which confirmed the partially enhanced film ductility and toughness due to the increased amide groups. Furthermore, polymer light-emitting devices (PLEDs) based on these copolymers presented comparable performances and stable electroluminescence (EL). Thin films of these copolymers also exhibited random laser emission with the threshold as low as 0.52 µJ/cm2, suggesting the wide prospective application in the field of flexible optoelectronic devices.

10.
Oncol Lett ; 20(3): 2897-2905, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32782606

RESUMO

X-linked ubiquitin-specific peptidase 9 (USP9X) serves important roles in the development and progression of various human cancers. However, its role and molecular mechanism in liver cancer require further elucidation. In the present study, USP9X was found to be upregulated in liver cancer tissues. At the same time, overexpression of USP9X promoted the proliferation, invasiveness and migration of liver cancer cells, which were subsequently suppressed by USP9X silencing. On a molecular level, the results revealed that USP9X knockdown suppressed elements of the Janus kinase 2 (JAK2)/STAT3 signaling pathway, including JAK2, STAT3, matrix metalloproteinase-2 and c-Myc. By contrast, overexpression of USP9X had the opposite effect. In conclusion, the results of the present study suggest that USP9X is upregulated in patients with liver cancer, which may accelerate the proliferation, invasiveness and migration of liver cancer cells by regulating the JAK2/STAT3 signaling pathway.

11.
iScience ; 16: 399-409, 2019 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-31228748

RESUMO

Easily processed, well-defined, and hierarchical uniform artificial architectures with intrinsic strong crystalline emission properties are necessary for a range of light-emitting optoelectronic devices. Herein, we designed and prepared ordered supramolecular spherulites, comprising planar conformational molecules as primary structures and multiple hydrogen bonds as physical cross-links. Compared with serious aggregation-induced fluorescence quenching (up to 70%), these highly ordered architectures exhibited unique and robust crystalline emission with a high PLQY of 55%, which was much higher than those of other terfluorenes. The primary reasons for the high PLQY are the uniform exciton energetic landscape created in the planar conformation and the highly ordered molecular packing in spherulite. Meanwhile, minimal residual defect (green-band) emissions are effectively suppressed in our oriented crystalline framework, whereas the strong and stable blue light radiations are promoted. These findings may confirm that supramolecular ordered artificial architectures may offer higher control and tunability for optoelectronic applications.

12.
Adv Mater ; 31(1): e1804811, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30370608

RESUMO

Controlling chain behavior through smart molecular design provides the potential to develop ultrastable and efficient deep-blue light-emitting conjugated polymers (LCPs). Herein, a novel supramolecular self-encapsulation strategy is proposed to construct a robust ultrastable conjugated polydiarylfluorene (PHDPF-Cz) via precisely preventing excitons from interchain cross-transfer/coupling and contamination from external trace H2 O/O2 . PHDPF-Cz consists of a mainchain backbone where the diphenyl groups localize at the 9-position as steric bulk moieties, and carbazole (Cz) units localize at the 4-position as supramolecular π-stacked synthon with the dual functionalities of self-assembly capability and hole-transport facility. The synergistic effect of the steric bulk groups and π-stacked carbazoles affords PHDPF-Cz as an ultrastable property, including spectral, morphological stability, and storage stability. In addition, PHDPF-Cz spin-coated gelation films also show thickness-insensitive deep-blue emission with respect to the reference polymers, which are suitable to construct solution-processed large-scale optoelectronic devices with higher reproducibility. High-quality and uniform deep-blue emission is observed in large-area solution-processed films. The electroluminescence shows high-quality deep-blue intrachain emission with a CIE (0.16, 0.12) and a very narrow full width at half-maximum of 32 nm. Finally, large-area and flexible polymer light-emitting devices with a single-molecular excitonic behavior are also fabricated. The supramolecular self-encapsulation design provides an effective strategy to construct ultrastable LCPs for optoelectronic applications.

13.
Clin Cancer Res ; 24(13): 3204-3216, 2018 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-29514844

RESUMO

Purpose: Hypoxia-inducible factor-2α (HIF2α) is regarded as a preferential target for individualized hepatocellular carcinoma (HCC) treatment and sorafenib resistance. Our study aimed to identify the regulatory mechanisms of HIF2α activity under hypoxic conditions. We sought to determine whether the COX-2/PGE2 axis is involved in the regulatory mechanisms of HIF2α activity and of sorafenib resistance in hypoxic HCC cells.Experimental Design: The cell viability, migration, and invasion abilities were measured to analyze the effects of HIF2α on hypoxic HCC cells. Both in vitro and in vivo HCC models were used to determine whether the COX-2/PGE2 axis is a driver of HIF2α level and activity, which then reduces the sensitivity of sorafenib treatment in hypoxic HCC cells.Results: Under hypoxic conditions, the COX-2/PGE2 axis effectively stabilized HIF2α and increased its level and activity via decreasing von Hippel-Lindau protein (p-VHL) level, and also enhanced HIF2α activity by promoting HIF2α nuclear translocation via MAPK pathway. The activation of HIF2α then led to the enhanced activation of VEGF, cyclin D1, and TGFα/EGFR pathway to mediate HCC development and reduce the sensitivity of sorafenib. More importantly, COX-2-specific inhibitors synergistically enhanced the antitumor activity of sorafenib treatment.Conclusions: Our data obtained demonstrate that the COX/PGE2 axis acts as a regulator of HIF2α expression and activity to promote HCC development and reduce sorafenib sensitivity by constitutively activating the TGFα/EGFR pathway. This study highlights the potential of COX-2-specific inhibitors for HCC treatment and particularly for enhancing the response to sorafenib treatment. Clin Cancer Res; 24(13); 3204-16. ©2018 AACR.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Carcinoma Hepatocelular/tratamento farmacológico , Carcinoma Hepatocelular/metabolismo , Ciclo-Oxigenase 2/metabolismo , Dinoprostona/metabolismo , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/metabolismo , Sorafenibe/uso terapêutico , Animais , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Apoptose/efeitos dos fármacos , Carcinoma Hepatocelular/patologia , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Ciclina D1/metabolismo , Modelos Animais de Doenças , Resistencia a Medicamentos Antineoplásicos , Humanos , Hipóxia/metabolismo , Neoplasias Hepáticas/patologia , Camundongos , Neovascularização Patológica/metabolismo , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/uso terapêutico , Proteólise , Transdução de Sinais/efeitos dos fármacos , Sorafenibe/farmacologia , Ensaios Antitumorais Modelo de Xenoenxerto
14.
J Phys Chem Lett ; 9(2): 364-372, 2018 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-29298074

RESUMO

We demonstrate a systematic visualization of the unique photophysical and fluorescence anisotropic properties of polyfluorene coplanar conformation (ß-conformation) using time-resolved scanning confocal fluorescence imaging (FLIM) and fluorescence anisotropy imaging microscopy (FAIM) measurements. We observe inhomogeneous morphologies and fluorescence decay profiles at various micrometer-sized regions within all types of polyfluorene ß-conformational spin-coated films. Poly(9,9-dioctylfluorene-2,7-diyl) (PFO) and poly[4-(octyloxy)-9,9-diphenylfluoren-2,7-diyl]-co-[5-(octyloxy)-9,9-diphenylfluoren-2,7-diyl] (PODPF) ß-domains both have shorter lifetime than those of the glassy conformation for the longer effective conjugated length and rigid chain structures. Besides, ß-conformational regions have larger fluorescence anisotropy for the low molecular rotational motion and high chain orientation, while the low anisotropy in glassy conformational regions shows more rotational freedom of the chain and efficient energy migration from amorphous regions to ß-conformation as a whole. Finally, ultrastable ASE threshold in the PODPF ß-conformational films also confirms its potential application in organic lasers. In this regard, FLIM and FAIM measurements provide an effective platform to explore the fundamental photophysical process of conformational transitions in conjugated polymer.

15.
ACS Appl Mater Interfaces ; 9(43): 37856-37863, 2017 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-28991431

RESUMO

Control of the hierarchical molecular organization of polydiarylfluorenes by synthetic strategies is significant for optimizing photophysical properties as well as the performance of light-emitting devices. Herein, for the suppression of molecular aggregation and enhancement of luminescence efficiency, a series of steric units were introduced into polydiarylfluorenes by copolymerization, with the aim of integrating the advantages of the steric-hindrance effect and of the ß-phase. Optical and Raman spectroscopies revealed a ß-phase conformation for a polymer copolymerized with spiro[fluorene-9,9'-xanthene] (SFX), with photoluminescence (PL) peaks at 454, 482, and 517 nm. Moreover, the morphological stability and electroluminescence (EL) stability were also improved without compromising the performance of the polymer light-emitting diodes (PLEDs). Furthermore, three steric-hindrance-functionalized copolymers showed significantly decreased thresholds for amplified spontaneous emission (EthASE) and enhanced stability following thermal annealing treatment. These results indicate that steric-hindrance functionalization is a superior approach to improve the overall stability and optoelectronic properties for blue-light-emitting π-conjugated polymers.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...