Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Biomed Mater Res A ; 111(11): 1781-1797, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37494632

RESUMO

Craniofacial bone defects induced by congenital malformations, trauma, or diseases frequently challenge the orthodontic or restorative treatment. Stem cell-based bone regenerative approaches emerged as a promising method to resolve bone defects. Microenvironment physical cues, such as the matrix elastic modulus or matrix topography, regulate stem cell differentiation via multiple genes. We constructed gelatin methacryloyl (GelMA), a well-known scaffold, to investigate the impact of elastic modulus on osteogenic differentiation in a three-dimensional environment. Confocal microscope was used to observe and assess the condensates fission and fusion. New bone formation was evaluated by micro-computed tomography at 6 weeks in calvarial defect rat. We found that the light curing increased elastic modulus of GelMA, and the pore size of GelMA decreased. The expression of osteogenic markers was inhibited in hBMSCs cultured in the low-elastic-modulus GelMA. In contrast, the expression of YAP, TAZ and TEAD was increased in the hBMSCs in the low-elastic-modulus GelMA. Furthermore, YAP assembled via liquid-liquid phase separation (LLPS) into condensates that were sensitive to 1'6-hexanediol. YAP recruit TAZ and TEAD4, but not RUNX2 into the condensates. In vivo, we also found that hBMSCs in high-elastic-modulus GelMA was more apt to form new bone. This study provides new insight into the mechanism of osteogenic differentiation. Reagents that can regulate the elastic modulus of substrate or LLPS may be applied to promote bone regeneration.


Assuntos
Células-Tronco Mesenquimais , Osteogênese , Ratos , Animais , Hidrogéis/farmacologia , Hidrogéis/metabolismo , Módulo de Elasticidade , Microtomografia por Raio-X , Diferenciação Celular , Gelatina/metabolismo
2.
FASEB J ; 36(11): e22590, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36208289

RESUMO

Many circular RNAs (circRNAs) involved in the osteogenesis of human bone marrow mesenchymal stem cells (hBMSCs) have recently been discovered. The role of circHIPK3 in osteogenesis has yet to be determined. Cell transfection was conducted using small-interfering RNAs (siRNAs). Expression of osteogenic markers were detected by quantitative reverse transcription-polymerase chain reaction, western blotting analysis, and immunofluorescence staining. Ectopic bone formation models in nude mice were used to examined the bone formation ability in vivo. The autophagy flux was examined via western blotting analysis, immunofluorescence staining and transmission electron microscopy analysis. RNA immunoprecipitation (RIP) analysis was carried out to analyze the binding between human antigen R (HUR) and circHIPK3 or autophagy-related 16-like 1 (ATG16L1). Actinomycin D was used to determine the mRNA stability. Our results demonstrated that silencing circHIPK3 promoted the osteogenesis of hBMSCs while silencing the linear mHIPK3 did not affect osteogenic differentiation, both in vivo and in vitro. Moreover, we found that knockdown of circHIPK3 activated autophagy flux. Activation of autophagy enhanced the osteogenesis of hBMSCs and inhibition of autophagy reduced the osteogenesis through using autophagy regulators chloroquine and rapamycin. We also discovered that circHIPK3 and ATG16L1 both bound to HUR. Knockdown of circHIPK3 released the binding sites of HUR to ATG16L1, which stabilized the mRNA expression of ATG16L1, resulting in the upregulation of ATG16L1 and autophagy activation. CircHIPK3 functions as an osteogenesis and autophagy regulator and has the potential for clinical application in the future.


Assuntos
Células-Tronco Mesenquimais , Osteogênese , Animais , Autofagia/genética , Células da Medula Óssea , Diferenciação Celular/fisiologia , Células Cultivadas , Cloroquina , Dactinomicina , Humanos , Células-Tronco Mesenquimais/metabolismo , Camundongos , Camundongos Nus , Osteogênese/genética , RNA Circular/genética , RNA Mensageiro/metabolismo , Sirolimo/metabolismo
3.
FASEB J ; 36(12): e22627, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36314562

RESUMO

Mechanical stress regulates various cellular functions like cell inflammation, immune responses, proliferation, and differentiation to maintain tissue homeostasis. However, the impact of mechanical signals on macrophages and the underlying mechanisms by which mechanical force regulates bone remodeling during orthodontic tooth movement remain unclear. NOD-like receptor family pyrin domain-containing 3 (NLRP3) inflammasome has been reported to promote osteoclastic differentiation to regulate alveolar bone resorption. But the relationship between the compressive force and NLRP3 inflammasome in macrophages remains unknown. In this study, immunohistochemical staining results showed elevated expression of NLRP3 and interleukin-1ß, as well as an increased number of macrophages expressing NLRP3, on the compression side of the periodontal tissues, after force application for 7 days. Furthermore, the number of tartrate-resistant acid phosphatase-positive osteoclasts, and the mRNA and protein expression levels of osteoclast-related genes in the periodontal tissue decreased in the Nlrp3-/- mice compared to the WT mice group after orthodontic movement. In vitro mechanical force activates the NLRP3 inflammasome and inhibits autophagy. Intraperitoneal injection of the autophagy inhibitor 3-methyladenine in Nlrp3-/- mice promoted orthodontic tooth movement. This result indicates that the absence of NLRP3 inflammasome activation can be partially compensated for by autophagy inhibitors. Mechanistically, force-induced activation of the NLRP3 inflammasome in macrophages via the cGAS/P2X7R axis. In conclusion, compressive force regulates orthodontic tooth movement via activating the NLRP3 inflammasome.


Assuntos
Inflamassomos , Proteína 3 que Contém Domínio de Pirina da Família NLR , Camundongos , Animais , Inflamassomos/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/genética , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Técnicas de Movimentação Dentária , Interleucina-1beta/metabolismo , Macrófagos/metabolismo , Osteoclastos/metabolismo
4.
Eur J Orthod ; 44(6): 669-678, 2022 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-35924725

RESUMO

OBJECTIVES: This study investigated the role of lncRNA growth arrest-specific transcript 5 (GAS5) in the inflammatory response of periodontal ligament stem cells (PDLSCs) during periodontitis with attempts to its possible mechanisms. MATERIALS AND METHODS: Gingiva samples were collected from healthy people and patients with periodontitis. The ligature-induced periodontitis model was established in mice. Cell transfection was utilized to knock down and overexpress GAS5 in PDLSCs. Quantitative real-time polymerase chain reaction (qRT-PCR) and fluorescence in situ hybridization were performed to detect the GAS5 expression. In combination with high-throughput sequencing technology, qRT-PCR, Western blotting, and immunofluorescence were performed to detect the effects of GAS5 on cytokines and proteins in the NF-κB pathway. RESULTS: GAS5 expression decreased in PDLSCs subjected to compressive force. GAS5 expression was downregulated in the gingiva tissues from patients with periodontitis. Consistent with the results of clinical samples, GAS5 expression decreased in the mouse ligature-induced periodontitis model. GAS5 expression was downregulated in PDLSCs under tumour necrosis factor (TNF)-α stimulation. Knockdown and overexpression of GAS5 increased and decreased the expression of cytokines induced by TNF-α in PDLSCs, respectively. The sequencing results showed that overexpressing GAS5 was related to genes in the NF-κB pathway. Overexpressing GAS5 alleviated p65 phosphorylation and inhibited the entry of p65 into the nucleus in the TNF-α activated NF-κB pathway, whereas GAS5 knockdown resulted in contrasting results. CONCLUSIONS: GAS5 alleviated the expression of cytokines in PDLSCs by inhibiting activation of the TNF-α-mediated NF-κB pathway. These findings provide new insight into the regulation of the PDLSCs inflammation response.


Assuntos
Periodontite , RNA Longo não Codificante , Animais , Humanos , Camundongos , Diferenciação Celular , Células Cultivadas , Hibridização in Situ Fluorescente , NF-kappa B/genética , NF-kappa B/metabolismo , Osteogênese , Ligamento Periodontal/metabolismo , Periodontite/genética , Periodontite/metabolismo , Periodontite/patologia , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Células-Tronco/metabolismo , Células-Tronco/patologia , Fator de Necrose Tumoral alfa/metabolismo
5.
Stem Cell Res Ther ; 13(1): 229, 2022 06 03.
Artigo em Inglês | MEDLINE | ID: mdl-35659362

RESUMO

BACKGROUND: A series of biochemical responses, including hypoxia and aseptic inflammation, occur in periodontal ligament cells (PDLCs) during periodontal tissue remodeling of orthodontic tooth movement (OTM). However, the role of long non-coding RNA (lncRNA) in these responses is still largely unknown. We investigated the role of the lncRNA SNHG8 in hypoxic and inflammatory responses during OTM and explored the underlying mechanisms. METHODS: The expression pattern of SNHG8, and hypoxic and inflammatory responses under compressive force were analyzed by qRT-PCR, immunohistochemistry, and western blotting, in vivo and in vitro. The effect of overexpression or knockdown of SNHG8 on the nuclear factor-kappaB (NF-κB) pathway was evaluated. RNA sequencing was performed for mechanistic analysis. The interaction between SNHG8 and hypoxia-inducible factor (HIF)-1α was studied using catRAPID, RNA immunoprecipitation, and RNA pulldown assays. The effect of the SNHG8-HIF-1α interaction on the NF-κB pathway was determined by western blotting. RESULTS: The NF-κB pathway was activated, and HIF-1α release was stabilized, in PDLCs under compressive force as well as in OTM model rats. The SNHG8 level markedly decreased both in vivo and in vitro. Overexpression of SNHG8 decreased the expression levels of inflammatory cytokines, the phosphorylation of p65, and the degradation of IκBα in PDLCs, whereas knockdown of SNHG8 reversed these effects. Mechanically, RNA sequencing showed that differentially expressed genes were enriched in cellular response to hypoxia after SNHG8 overexpression. SNHG8 binds to HIF-1α, thus preventing HIF-1 from activating downstream genes, including those related to the NF-κB pathway. CONCLUSION: SNHG8 binds to HIF-1α. During OTM, the expression of SNHG8 dramatically decreased, releasing free functional HIF-1α and activating the downstream NF-κB pathway. These data suggest a novel lncRNA-regulated mechanism during periodontal tissue remodeling in OTM.


Assuntos
NF-kappa B , RNA Longo não Codificante , Animais , Hipóxia Celular/fisiologia , Hipóxia/genética , Hipóxia/metabolismo , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , NF-kappa B/genética , NF-kappa B/metabolismo , Ligamento Periodontal/metabolismo , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Ratos
6.
J Clin Periodontol ; 49(10): 1038-1051, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35713268

RESUMO

AIM: We investigated the role of long non-coding RNAs and small nucleolar RNA host gene 5 (SNHG5) in the pathogenesis of periodontitis. MATERIALS AND METHODS: A ligature-induced periodontitis mouse model was established, and gingival tissues were collected from patients with periodontitis and healthy controls. Inflammatory cytokines were detected using quantitative reverse transcription-polymerase chain reaction and western blotting analyses. Direct interactions between SNHG5 and p65 were detected by RNA pull-down and RNA immunoprecipitation assays. Micro-computed tomography, haematoxylin and eosin staining, and immunohistochemical staining were used to measure periodontal bone loss. RESULTS: SNHG5 expression was down-regulated in human and mouse periodontal tissues compared to that in the healthy controls. In vitro experiments demonstrated that SNHG5 significantly ameliorated tumour necrosis factor α-induced inflammation. Mechanistically, SNHG5 directly binds to the nuclear factor-kappa B (NF-κB) p65 subunit and inhibits its translocation, thereby suppressing the NF-κB signalling pathway activation and reducing the nucleotide-binding oligomerization domain-like receptor family pyrin domain-containing three inflammasome expression. Locally injecting si-SNHG5 aggravated the periodontal destruction. CONCLUSION: This study revealed that SNHG5 mediates periodontal inflammation through the NF-κB signalling pathway, providing a potential therapeutic target for periodontitis treatment.


Assuntos
Periodontite , RNA Longo não Codificante , Animais , Citocinas/metabolismo , Amarelo de Eosina-(YS)/uso terapêutico , Humanos , Inflamassomos/metabolismo , Inflamassomos/uso terapêutico , Inflamação/metabolismo , Interleucina-1beta/metabolismo , Camundongos , NF-kappa B/metabolismo , Nucleotídeos/uso terapêutico , Periodontite/tratamento farmacológico , RNA Longo não Codificante/genética , RNA Longo não Codificante/uso terapêutico , RNA Nucleolar Pequeno/uso terapêutico , Fator de Necrose Tumoral alfa/metabolismo , Microtomografia por Raio-X
7.
Stem Cell Res Ther ; 13(1): 130, 2022 03 28.
Artigo em Inglês | MEDLINE | ID: mdl-35346361

RESUMO

BACKGROUND: The treatment of bone loss has posed a challenge to clinicians for decades. Thus, it is of great significance to identify more effective methods for bone regeneration. However, the role and mechanisms of long non-coding RNA small nucleolar RNA host gene 5 (SNHG5) during osteogenic differentiation remain unclear. METHODS: We investigated the function of SNHG5, Yin Yang 1 (YY1), miR-212-3p and growth differentiation factor 5 (GDF5) in osteogenic differentiation of human bone marrow mesenchymal stem cells (hBMSCs) in vitro and in vivo. Molecular mechanisms were clarified by chromatin immunoprecipitation assay and dual luciferase reporter assay. RESULTS: We found SNHG5 expression was upregulated during osteogenesis of hBMSCs. Knockdown of SNHG5 in hBMSCs inhibited osteogenic differentiation while overexpression of SNHG5 promoted osteogenesis. Moreover, YY1 transcription factor directly bound to the promoter region of SNHG5 and regulated SNHG5 expression to promote osteogenesis. Dual luciferase reporter assay confirmed that SNHG5 acted as a miR-212-3p sponge and miR-212-3p directly targeted GDF5 and further activated Smad1/5/8 phosphorylation. miR-212-3p inhibited osteogenic differentiation, while GDF5 promoted osteogenic differentiation of hBMSCs. In addition, calvarial defect experiments showed knockdown of SNHG5 and GDF5 inhibited new bone formation in vivo. CONCLUSION: Our results demonstrated that the novel pathway YY1/SNHG5/miR-212-3p/GDF5/Smad regulates osteogenic differentiation of hBMSCs and may serve as a potential target for the treatment of bone loss.


Assuntos
Células-Tronco Mesenquimais , MicroRNAs , Osteogênese , RNA Longo não Codificante , Fator 5 de Diferenciação de Crescimento/genética , Fator 5 de Diferenciação de Crescimento/metabolismo , Humanos , Células-Tronco Mesenquimais/citologia , MicroRNAs/genética , RNA Longo não Codificante/genética
8.
Theranostics ; 12(3): 999-1011, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35154471

RESUMO

Mucin 1 (MUC1) is a heterodimeric transmembrane glycoprotein that protects epithelial cells in mammals. The transmembrane C-terminal subunit (MUC1-C) plays a crucial role in oncogenesis. As an oncoprotein, MUC1-C regulates a number of proteins that are associated with tumorigenesis by interacting with oncoproteins, transcription factors, coactivators, etc., inducing proliferation, epithelial-mesenchymal transition (EMT), invasion, stemness, immune evasion, and drug resistance. Moreover, MUC1-C modulates the expression of non-coding RNAs (ncRNAs), which further regulate carcinogenesis by directly binding to specific proteins. ncRNAs can also affect MUC1 protein expression by targeting the MUC1 mRNA 3' untranslated region (UTR). A series of ncRNAs can modulate cancer development by regulating MUC1-C. This review focuses on the interaction of MUC1-C with proteins and ncRNAs in cancer progression. We also summarize the recent advances in immunotherapy with a focus on therapeutic approaches based on MUC1-C and nanocarrier complexes for cancer treatment.


Assuntos
MicroRNAs , Neoplasias , Animais , Linhagem Celular Tumoral , Transição Epitelial-Mesenquimal/genética , Mamíferos/genética , Mamíferos/metabolismo , MicroRNAs/metabolismo , Mucina-1/metabolismo , Neoplasias/genética , Neoplasias/terapia , Proteínas Oncogênicas , RNA não Traduzido/genética
9.
FASEB J ; 36(1): e22120, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34958157

RESUMO

The mineralization capability of cementoblasts is the foundation for repairing orthodontic treatment-induced root resorption. It is essential to investigate the regulatory mechanism of mineralization in cementoblasts under mechanical compression to improve orthodontic therapy. Autophagy has a protective role in maintaining cell homeostasis under environmental stress and was reported to be involved in the mineralization process. Long noncoding RNAs are important regulators of biological processes, but their functions in compressed cementoblasts during orthodontic tooth movement remain unclear. In this study, we showed that compressive force downregulated the expression of mineralization-related markers. LincRNA-p21 was strongly enhanced by compressive force. Overexpression of lincRNA-p21 downregulated the expression of mineralization-related markers, while knockdown of lincRNA-p21 reversed the compressive force-induced decrease in mineralization. Furthermore, we found that autophagy was impeded in compressed cementoblasts. Then, overexpression of lincRNA-p21 decreased autophagic activity, while knockdown of lincRNA-p21 reversed the autophagic process decreased by mechanical compression. However, the autophagy inhibitor 3-methyladenine abolished the lincRNA-p21 knockdown-promoted mineralization, and the autophagy activator rapamycin rescued the mineralization inhibited by lincRNA-p21 overexpression. Mechanistically, the direct binding between lincRNA-p21 and FoxO3 blocked the expression of autophagy-related genes. In a mouse orthodontic tooth movement model, knockdown of lincRNA-p21 rescued the impeded autophagic process in cementoblasts, enhanced cementogenesis, and alleviated orthodontic force-induced root resorption. Overall, compressive force-induced lincRNA-p21 inhibits the mineralization capability of cementoblasts by impeding the autophagic process.


Assuntos
Antígenos de Diferenciação/biossíntese , Autofagia , Calcificação Fisiológica , Força Compressiva , Cemento Dentário/metabolismo , Regulação para Baixo , RNA Longo não Codificante/biossíntese , Animais , Masculino , Camundongos
10.
J Periodontol ; 93(7): 1093-1106, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-34793611

RESUMO

BACKGROUND: Identifying the factors affecting osteoblast differentiation of periodontal ligament cells (PDLCs) can help enhance the regeneration of periodontal tissue. LncRNA plasmacytoma variant translocation 1 (lncPVT1) is an important regulatory factor involved in many biological processes, but its role in osteogenesis remains unclear. METHODS: Expressions of osteogenic markers were detected by quantitative reverse transcription polymerase chain reaction and Western blot analysis. Alkaline phosphatase staining was conducted for early osteoblast differentiation and alizarin red S staining was used for mineral deposition. RNA sequencing was used to identify the miRNAs regulated by lncPVT1 during osteogenesis. Cell transfection was used to overexpress or knockdown lncPVT1 and miR-10a-5p. Dual luciferase reporter assays were conducted to analyze the binding of miR-10a-5p to brain-derived neurotrophic factor (BDNF). RESULTS: LncPVT1 was significantly increased during osteogenic induction of PDLCs. Overexpression of lncPVT1 promoted osteogenesis, whereas lncPVT1 knockdown inhibited this process. RNA sequencing showed that miR-10a-5p expression was significantly increased after lncPVT1 knockdown. RNA immunoprecipitation assay further demonstrated the binding potential of lncPVT1 and miR-10a-5p. MiR-10a-5p inhibited the osteogenesis of PDLCs, and partially reversed the stimulatory effects of lncPVT1. Subsequently, we identified a predicted binding site for miR-10a-5p on BDNF and confirmed it using dual luciferase reporter assays. Moreover, lncPVT1 upregulated the expression of BDNF, whereas miR-10a-5p downregulated BDNF expression. BDNF promoted osteogenesis and partially rescued the si-lncPVT1-mediated inhibition of PDLCs osteogenic differentiation. CONCLUSIONS: LncPVT1 positively regulated the osteogenic differentiation of PDLCs via miR-10a-5p and BDNF. Our results provide a promising target for enhancing the osteogenic potential of PDLCs.


Assuntos
MicroRNAs , Osteogênese , RNA Longo não Codificante , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Diferenciação Celular/genética , Células Cultivadas , Humanos , MicroRNAs/genética , MicroRNAs/metabolismo , Osteogênese/genética , Ligamento Periodontal , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo
11.
Front Cell Dev Biol ; 9: 631181, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33604341

RESUMO

Orthodontic tooth movement is achieved by periodontal tissue remodeling triggered by mechanical force. It is essential to investigate the reaction of periodontal ligament stem cells (PDLSCs) for improving orthodontic therapeutic approaches. Autophagy is an endogenous defense mechanism to prevent mechanical damage of environmental change. Long non-coding RNAs (lncRNAs) are key regulators in gene regulation, but their roles are still largely uncharacterized in the reaction of PDLSCs during orthodontic tooth movement. In this study, we showed that autophagy was significantly induced in PDLSCs under compressive force, as revealed by the markers of autophagy, microtubule-associated protein light chain 3 (LC3) II/I and Beclin1, and the formation of autophagosomes. After the application of compressive force, lncRNA FER1L4 was strongly upregulated. Overexpression of FER1L4 increased the formation of autophagosome and autolysosomes in PDLSCs, while knockdown of FER1L4 reversed the autophagic activity induced by mechanical force. In mechanism, FER1L4 inhibited the phosphorylation of protein kinase B (AKT) and subsequently increased the nuclear translocation of forkhead box O3 (FOXO3) and thus mediated autophagic cascades under compressive strain. In mouse model, the expression of Lc3 as well as Fer1l4 was increased in the pressure side of periodontal ligament during tooth movement. These findings suggest a novel mechanism of autophagy regulation by lncRNA during periodontal tissue remodeling of orthodontic treatment.

12.
Oral Dis ; 27(5): 1268-1282, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32890413

RESUMO

OBJECTIVE: This study aimed to investigate how mechanical force affects the proliferation of human periodontal ligament stem cells (hPDLSCs). METHODS: CCK-8 assays and staining of ki67 were performed to evaluate hPDLSCs proliferation. qRT-PCR, ELISA, or Western blot analysis were used to measure the expression levels of interleukin (IL)-6, miR-31 host gene (MIR31HG), DNA methyltransferase 1 (DNMT1), and DNA methyltransferase 3B (DNMT3B). Dual-luciferase reporter assays and chromatin immunoprecipitation (ChIP) assays were conducted to determine whether MIR31HG was targeted by DNMT1 and DNMT3B. MassARRAY mass spectrometry was used to quantify DNA methylation levels of the MIR31HG promoter. RESULTS: Mechanical force inhibited hPDLSCs proliferation with the downregulation of MIR31HG and upregulation of IL-6, DNMT1 and DNMT3B. Knockdown of MIR31HG suppressed hPDLSCs proliferation, and knockdown of DNMT1 or DNMT3B reversed mechanical force-induced downregulation of MIR31HG. Dual-luciferase and ChIP assays revealed DNMT1 and DNMT3B bound MIR31HG promoter in the region 1,015 bp upstream of the transcriptional start site. Treatment with 5'-aca-2'-deoxycytidine downregulated DNA methylation level in MIR31HG gene promoter, while mechanical force promoted the methylation of MIR31HG gene promoter. CONCLUSIONS: These findings elucidated how mechanical force affects proliferation via MIR31HG in hPDLSCs, providing clues for possible MIR31HG-based orthodontic therapeutic approaches.


Assuntos
Metilação de DNA , Ligamento Periodontal , Proliferação de Células , Regulação para Baixo , Humanos , Regulação para Cima
13.
Cell Prolif ; 54(1): e12957, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33231338

RESUMO

BACKGROUND: Periodontitis is a prevalent oral inflammatory disease, which can cause periodontal ligament to a local hypoxia environment. However, the mechanism of hypoxia associated long non-coding RNAs (lncRNAs) involved in periodontitis is still largely unknown. METHODS: Microarray was performed to detect the expression patterns of lncRNAs in 3 pairs of gingival tissues from patients with periodontitis and healthy controls. The expression of lncRNA 01126 (LINC01126), miR-518a-5p and hypoxia-inducible factor-1α (HIF-1α) in periodontal tissues and in human periodontal ligament cells (hPDLCs) under hypoxia was measured by quantitative real-time polymerase chain reaction or western blot. Fluorescence in situ hybridization and cell fraction assay were performed to determine the subcellular localization of LINC01126 and miR-518a-5p. Overexpression or knockdown of LINC01126 or HIF-1α was used to confirm their biological roles in hPDLCs. MTT assays were performed to evaluate hPDLCs proliferation ability. Flow cytometry was used to detect apoptosis. ELISA was used to measure the expression levels of interleukin (IL)-1ß, IL-6, IL-8 and TNF-α. Dual-luciferase reporter assays were performed to assess the binding of miR-518a-5p to LINC01126 and HIF-1α. RNA immunoprecipitation assay was used to identify whether LINC01126 and miR-518a-5p were significantly enriched in AGO-containing micro-ribonucleoprotein complexes. RESULTS: We selected LINC01126, which was the most highly expressed lncRNA, to further verify its functions in periodontitis-induced hypoxia. The expression of LINC01126 was increased in periodontal tissues. In vitro experiment demonstrated that LINC01126 suppressed proliferation, promoted apoptosis and inflammation of hPDLCs under hypoxia via sponging miR-518a-5p. Moreover, we identified HIF-1α acted as a direct target of miR-518a-5p in hPDLCs and LINC01126 promoted periodontitis pathogenesis by regulating the miR-518a-5p/HIF-1α/MAPK pathway. CONCLUSION: LINC01126 promotes periodontitis pathogenesis of hPDLCs via miR-518a-5p/HIF-1α/MAPK pathway, providing a possible clue for LINC01126-based periodontal therapeutic approaches.


Assuntos
Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , MicroRNAs/metabolismo , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Ligamento Periodontal/metabolismo , Periodontite/metabolismo , RNA Longo não Codificante/metabolismo , Adulto , Apoptose , Proliferação de Células , Feminino , Células HEK293 , Humanos , Hibridização in Situ Fluorescente , Masculino , Ligamento Periodontal/patologia , Periodontite/patologia , RNA Longo não Codificante/genética
14.
Front Pharmacol ; 11: 701, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32508644

RESUMO

Both extracellular matrix (ECM) and stem cells contribute to the formation of bones. Accumulating evidence proved that the growth differentiation factor 5 (GDF5) plays a vital role in ECM osteogenesis regulation; the use of human periodontal ligament stem cells (hPDLSCs) may contribute to alveolar bone regeneration. Moreover, long noncoding RNAs (lncRNA) serves as a regulator in the growing process of cellular organisms including bone formation. Previous efforts has led us to the discovery that the expression of growth arrest specific transcript 5 (GAS5) changed in the osteogenic differentiation of hPDLSCs. Moreover, the expression of GAS5, as it turns out, is correlated to GDF5. This study attempts to investigate the inner workings of GAS5 in its regulation of osteoblastic differentiation of hPDLSCs. Cell transfection, Alkaline phosphatase (ALP) staining, Alizarin red S (ARS) staining, qRT-PCR, immunofluorescence staining analysis and western blotting were employed in this study. It came to our notice that GAS5 and GDF5 expression increased during osteogenesis induction of hPDLSCs. Knocking down of GAS5 inhibited the osteogenic differentiation of hPDLSCs, whereas overexpressing GAS5 promoted these effects. Molecular mechanism study further demonstrated that overexpressing GAS5 bolsters GDF5 expression and boosts the phosphorylation of JNK and p38 in hPDLSCs, with opposite effects in GAS5 knockdown group. To sum up, long noncoding RNA GAS5 serves to regulate the osteogenic differentiation of PDLSCs via GDF5 and p38/JNK signaling pathway. Our findings expand the theoretical understanding of the osteogenesis mechanism in hPDLSCs, providing new insights into the treatment of bone defects.

15.
Stem Cell Res Ther ; 11(1): 5, 2020 01 03.
Artigo em Inglês | MEDLINE | ID: mdl-31900200

RESUMO

BACKGROUND: Periodontal ligament stromal cells (PDLSCs) are ideal cell sources for periodontal tissue repair and regeneration, but little is known about what determines their osteogenic capacity. Long non-coding RNAs (lncRNAs) are important regulatory molecules at both transcriptional and post-transcriptional levels. However, their roles in the osteogenic differentiation of PDLSCs are still largely unknown. METHODS: The expression of lncRNA Fer-1-like family member 4 (FER1L4) during the osteogenic differentiation of PDLSCs was detected by quantitative reverse transcription polymerase chain reaction. Overexpression or knockdown of FER1L4 was used to confirm its regulation of osteogenesis in PDLSCs. Alkaline phosphatase and Alizarin red S staining were used to detect mineral deposition. Dual luciferase reporter assays were used to analyze the binding of miR-874-3p to FER1L4 and vascular endothelial growth factor A (VEGFA). Bone regeneration in critical-sized calvarial defects was assessed in nude mice. New bone formation was analyzed by micro-CT, hematoxylin and eosin staining, Masson's trichrome staining, and immunohistochemical analyses. RESULTS: FER1L4 levels increased gradually during consecutive osteogenic induction of PDLSCs. Overexpression of FER1L4 promoted the osteogenic differentiation of PDLSCs, as revealed by alkaline phosphatase activity, Alizarin red S staining, and the expression of osteogenic markers, whereas FER1L4 knockdown inhibited these processes. Subsequently, we identified a predicted binding site for miR-874-3p on FER1L4 and confirmed a direct interaction between them. Wild-type FER1L4 reporter activity was significantly inhibited by miR-874-3p, whereas mutant FER1L4 reporter was not affected. MiR-874-3p inhibited osteogenic differentiation and reversed the promotion of osteogenesis in PDLSCs by FER1L4. Moreover, miR-874-3p targeted VEGFA, a crucial gene in osteogenic differentiation, whereas FER1L4 upregulated the expression of VEGFA. In vivo, overexpression of FER1L4 led to more bone formation compared to the control group, as demonstrated by micro-CT and the histologic analyses. CONCLUSION: FER1L4 positively regulates the osteogenic differentiation of PDLSCs via miR-874-3p and VEGFA. Our study provides a promising target for enhancing the osteogenic potential of PDLSCs and periodontal regeneration.


Assuntos
MicroRNAs/metabolismo , Osteogênese/fisiologia , Ligamento Periodontal/citologia , Ligamento Periodontal/metabolismo , RNA Longo não Codificante/metabolismo , Fator A de Crescimento do Endotélio Vascular/metabolismo , Proteínas de Transporte Vesicular/metabolismo , Adolescente , Animais , Diferenciação Celular/fisiologia , Criança , Feminino , Humanos , Masculino , Camundongos , Camundongos Nus , MicroRNAs/genética , RNA Longo não Codificante/genética , Transfecção , Proteínas de Transporte Vesicular/genética
16.
Angle Orthod ; 89(3): 455-463, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30605018

RESUMO

OBJECTIVES: To investigate the long noncoding RNA (lncRNA) expression profile of cementoblasts under compressive force. MATERIALS AND METHODS: Mouse cementoblasts were exposed to compression (1.5 g/cm2) for 8 hours. RNA sequencing (RNA-seq) was performed to compare the transcriptomes of the compressed and control cells. Quantitative real-time polymerase chain reaction (qRT-PCR) was used to validate five of the differentially expressed lncRNAs of interest. Gene Ontology (GO) functional annotation and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses were also performed. RESULTS: A total of 70 lncRNAs and 521 mRNAs were differentially regulated in cementoblasts subjected to compressive loading. Among the differentially expressed lncRNAs, 57 were upregulated and 13 downregulated. The expression levels of the five selected lncRNAs (Prkcz2, Hklos, Trp53cor1, Gdap10, and Ak312-ps) were validated by qRT-PCR and consistent with the RNA-seq results. GO functional annotation demonstrated upregulation of genes associated with cellular response to hypoxia and apoptotic processes during compressive loading. KEGG analysis identified the crucial pathways involving the hypoxia-inducing factor-1α, forkhead box O, and mammalian target of rapamycin signaling pathways. CONCLUSIONS: Mechanical compression changes the lncRNA expression profile of cementoblasts, providing important references for further investigation into the role and regulation of lncRNAs in compressed cementoblasts and root resorption during orthodontic treatment.


Assuntos
Cemento Dentário , RNA Longo não Codificante , Animais , Cemento Dentário/citologia , Cemento Dentário/metabolismo , Regulação da Expressão Gênica , Ontologia Genética , Camundongos , RNA Mensageiro , Regulação para Cima
17.
Int J Biol Sci ; 14(6): 633-643, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29904278

RESUMO

Saliva, which contains biological information, is considered a valuable diagnostic tool for local and systemic diseases and conditions because, similar to blood, it contains important molecules like DNA, RNA, and proteins. Exosomes are cell-derived vesicles 30-100 nm in diameter with substantial biological functions, including intracellular communication and signalling. These vesicles, which are present in bodily fluids, including saliva, are released upon fusion of multivesicular bodies (MVBs) with the cellular plasma membrane. Salivary diagnosis has notable advantages, which include noninvasiveness, ease of collection, absence of coagulation, and a similar content as plasma, as well as increased patient compliance compared to other diagnostic approaches. However, investigation of the roles of salivary exosomes is still in its early years. In this review, we first describe the characteristics of endocytosis and secretion of salivary exosomes, as well as database and bioinformatics analysis of exosomes. Then, we describe strategies for the isolation of exosomes from human saliva and the emerging role of salivary exosomes as potential biomarkers of oral and other systemic diseases. Given the ever-growing role of salivary exosomes, defining their functions and understanding their specific mechanisms will provide novel insights into possible applications of salivary exosomes in the diagnosis and treatment of systemic diseases.


Assuntos
Biomarcadores/metabolismo , Exossomos/metabolismo , Saliva/metabolismo , Animais , Exossomos/genética , Genômica , Humanos , Corpos Multivesiculares/genética , Corpos Multivesiculares/metabolismo , Transdução de Sinais/genética , Transdução de Sinais/fisiologia
18.
Cell Physiol Biochem ; 44(1): 1-20, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29130960

RESUMO

P-Element induced wimpy testis (PIWI)-interacting RNAs (piRNAs) are a type of noncoding RNAs (ncRNAs) and interact with PIWI proteins. piRNAs were primarily described in the germline, but emerging evidence revealed that piRNAs are expressed in a tissue-specific manner among multiple human somatic tissue types as well and play important roles in transposon silencing, epigenetic regulation, gene and protein regulation, genome rearrangement, spermatogenesis and germ stem-cell maintenance. PIWI proteins were first discovered in Drosophila and they play roles in spermatogenesis, germline stem-cell maintenance, self-renewal, retrotransposons silencing and the male germline mobility control. A growing number of studies have demonstrated that several piRNA and PIWI proteins are aberrantly expressed in various kinds of cancers and may probably serve as a novel biomarker and therapeutic target for cancer treatment. Nevertheless, their specific mechanisms and functions need further investigation. In this review, we discuss about the biogenesis, functions and the emerging role of piRNAs and PIWI proteins in cancer, providing novel insights into the possible applications of piRNAs and PIWI proteins in cancer diagnosis and clinical treatment.


Assuntos
Proteínas Argonautas/metabolismo , Neoplasias/patologia , RNA Interferente Pequeno/metabolismo , Animais , Proteínas Argonautas/genética , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo , Elementos de DNA Transponíveis/genética , Epigênese Genética , Regulação da Expressão Gênica , Humanos , Neoplasias/diagnóstico , Neoplasias/genética , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo
19.
Oncotarget ; 8(38): 64551-64563, 2017 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-28969093

RESUMO

Circular RNAs (circRNAs) are a novel type of universal and diverse endogenous noncoding RNAs (ncRNAs) and they form a covalently closed continuous loop without 5' or 3' tails unlike linear RNAs. Most circRNAs are presented with characteristics of abundance, stability, conservatism, and often exhibiting tissue/developmental-stage-specific expression. CircRNAs are generated either from exons or introns by back splicing or lariat introns. CircRNAs play important roles as miRNA sponges, gene transcription and expression regulators, RNA-binding protein (RBP) sponges and protein/peptide translators. Emerging evidence revealed the function of circRNAs in cancer and may potentially serve as a required novel biomarker and therapeutic target for cancer treatment. In this review, we discuss about the origins, characteristics and functions of circRNA and how they work as miRNA sponges, gene transcription and expression regulators, RBP sponges in cancer as well as current research methods of circRNAs, providing evidence for the significance of circRNAs in cancer diagnosis and clinical treatment.

20.
Medicine (Baltimore) ; 96(16): e6562, 2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-28422843

RESUMO

BACKGROUND: The aim of this study is to investigate the effects of hypoxia on the proliferation, morphology, migration ability, hypoxia inducible factor (HIF) 1 (HIF-1) expression, and the relationship with Wnt/ß-catenin signaling of human periodontal ligament cells (hPDLCs) in vitro. METHODS: hPDLCs (4th passage) cultured by the tissue culture method were randomly assigned to slight (5% O2), severe hypoxia (1% O2) groups, and the control (21% O2) group, respectively. From 1st to 7th day, the optical density values were detected, and the growth curve was described. Wound healing assay was done to observe the migration ability of hPDLCs under various O2 conditions. Then reverse transcription quantitative real-time polymerase chain reaction (RT-qPCR) was used to detect the expression of cementum-related genes and Wnt signaling pathway-related genes. Further, RT-qPCR, Western blot, and immunofluorescence staining method were constructed to show HIF expressions under different O2 concentrations in hPDLCs. RESULTS: The growth rate of hPDLCs decreased with the reduction of O2 content by degree, and the morphology of hPDLCs changed in different O2 contents. Besides, hPDLCs migrate faster in 21% and 5% O2 than in 1% O2, and both the expressions of cementum-related genes and Wnt signaling pathway-related genes were raised under hypoxic conditions. In addition, with the reduction of O2 concentration, the messenger RNA and protein level expression of HIF were all increased, and HIF was gradually transported from cytoplasm into the nucleus and in 1% O2 concentration, it was mainly expressed in the nucleus. CONCLUSION: This finding demonstrated that hypoxia was capable of suppressing the proliferation and migration ability, changing the morphology of hPDLCs, and stabilizing HIF-1α against degradation and promoting its translocation to the nucleus. Meanwhile, hypoxia may regulate hPDLCs proliferation and cementogenic differentiation via Wnt/ß-catenin signaling pathway, which may potentially provide a novel insight into the etiology and treatment of periodontal diseases.


Assuntos
Subunidade alfa do Fator 1 Induzível por Hipóxia/biossíntese , Hipóxia/metabolismo , Ligamento Periodontal/metabolismo , Via de Sinalização Wnt/fisiologia , Diferenciação Celular , Proliferação de Células , Células Cultivadas , Humanos , Ligamento Periodontal/citologia , RNA Mensageiro/biossíntese , Distribuição Aleatória , Reação em Cadeia da Polimerase em Tempo Real , Via de Sinalização Wnt/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...