Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 15(1): 5689, 2024 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-38971796

RESUMO

Leukemia is a kind of hematological malignancy originating from bone marrow, which provides essential signals for initiation, progression, and recurrence of leukemia. However, how to specifically deliver drugs to the bone marrow remains elusive. Here, we develop biomimetic vesicles by infusing hematopoietic stem and progenitor cell (HSPC) membrane with liposomes (HSPC liposomes), which migrate to the bone marrow of leukemic mice via hyaluronic acid-CD44 axis. Moreover, the biomimetic vesicles exhibit superior binding affinity to leukemia cells through intercellular cell adhesion molecule-1 (ICAM-1)/integrin ß2 (ITGB2) interaction. Further experiments validate that the vesicles carrying chemotherapy drug cytarabine (Ara-C@HSPC-Lipo) markedly inhibit proliferation, induce apoptosis and differentiation of leukemia cells, and decrease number of leukemia stem cells. Mechanically, RNA-seq reveals that Ara-C@HSPC-Lipo treatment induces apoptosis and differentiation and inhibits the oncogenic pathways. Finally, we verify that HSPC liposomes are safe in mice. This study provides a method for targeting bone marrow and treating leukemia.


Assuntos
Apoptose , Medula Óssea , Citarabina , Sistemas de Liberação de Medicamentos , Células-Tronco Hematopoéticas , Leucemia , Lipossomos , Animais , Células-Tronco Hematopoéticas/efeitos dos fármacos , Células-Tronco Hematopoéticas/metabolismo , Camundongos , Citarabina/farmacologia , Medula Óssea/efeitos dos fármacos , Medula Óssea/patologia , Medula Óssea/metabolismo , Apoptose/efeitos dos fármacos , Leucemia/tratamento farmacológico , Leucemia/patologia , Humanos , Diferenciação Celular/efeitos dos fármacos , Membrana Celular/metabolismo , Membrana Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Antígenos CD18/metabolismo , Proliferação de Células/efeitos dos fármacos , Receptores de Hialuronatos/metabolismo , Ácido Hialurônico/química , Células-Tronco Neoplásicas/efeitos dos fármacos , Células-Tronco Neoplásicas/patologia , Células-Tronco Neoplásicas/metabolismo
2.
Nat Cell Biol ; 26(6): 946-961, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38745030

RESUMO

RNA-binding proteins (RBPs) are pivotal in acute myeloid leukaemia (AML), a lethal disease. Although specific phase separation-competent RBPs are recognized in AML, the effect of their condensate formation on AML leukaemogenesis, and the therapeutic potential of inhibition of phase separation are underexplored. In our in vivo CRISPR RBP screen, fibrillarin (FBL) emerges as a crucial nucleolar protein that regulates AML cell survival, primarily through its phase separation domains rather than methyltransferase or acetylation domains. These phase separation domains, with specific features, coordinately drive nucleoli formation and early processing of pre-rRNA (including efflux, cleavage and methylation), eventually enhancing the translation of oncogenes such as MYC. Targeting the phase separation capability of FBL with CGX-635 leads to elimination of AML cells, suggesting an additional mechanism of action for CGX-635 that complements its established therapeutic effects. We highlight the potential of PS modulation of critical proteins as a possible therapeutic strategy for AML.


Assuntos
Proteínas Cromossômicas não Histona , Leucemia Mieloide Aguda , Precursores de RNA , Processamento Pós-Transcricional do RNA , Humanos , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/patologia , Leucemia Mieloide Aguda/metabolismo , Precursores de RNA/metabolismo , Precursores de RNA/genética , Proteínas Cromossômicas não Histona/metabolismo , Proteínas Cromossômicas não Histona/genética , Animais , Linhagem Celular Tumoral , Biossíntese de Proteínas , Nucléolo Celular/metabolismo , Nucléolo Celular/genética , Camundongos , Proteínas de Ligação a RNA/metabolismo , Proteínas de Ligação a RNA/genética , Regulação Leucêmica da Expressão Gênica , Separação de Fases
3.
Cell Rep ; 43(4): 114065, 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38578828

RESUMO

Epigenetic modification shapes differentiation trajectory and regulates the exhaustion state of chimeric antigen receptor T (CAR-T) cells. Limited efficacy induced by terminal exhaustion closely ties with intrinsic transcriptional regulation. However, the comprehensive regulatory mechanisms remain largely elusive. Here, we identify class I histone deacetylase inhibitors (HDACi) as boosters of CAR-T cell function by high-throughput screening of chromatin-modifying drugs, in which M344 and chidamide enhance memory maintenance and resistance to exhaustion of CAR-T cells that induce sustained antitumor efficacy both in vitro and in vivo. Mechanistically, HDACi decrease HDAC1 expression and enhance H3K27ac activity. Multi-omics analyses from RNA-seq, ATAC-seq, and H3K27ac CUT&Tag-seq show that HDACi upregulate expression of TCF4, LEF1, and CTNNB1, which subsequently activate the canonical Wnt/ß-catenin pathway. Collectively, our findings elucidate the functional roles of class I HDACi in enhancing CAR-T cell function, which provides the basis and therapeutic targets for synergic combination of CAR-T cell therapy and HDACi treatment.


Assuntos
Aminopiridinas , Inibidores de Histona Desacetilases , Via de Sinalização Wnt , Inibidores de Histona Desacetilases/farmacologia , Via de Sinalização Wnt/efeitos dos fármacos , Animais , Humanos , Camundongos , Benzamidas/farmacologia , Linhagem Celular Tumoral , Imunoterapia Adotiva/métodos , Receptores de Antígenos Quiméricos/metabolismo , Linfócitos T/efeitos dos fármacos , Linfócitos T/metabolismo , Linfócitos T/imunologia , Histona Desacetilase 1/metabolismo
4.
Cell Discov ; 10(1): 35, 2024 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-38548771

RESUMO

Microplastics (MPs) are contaminants ubiquitously found in the global biosphere that enter the body through inhalation or ingestion, posing significant risks to human health. Recent studies emerge that MPs are present in the bone marrow and damage the hematopoietic system. However, it remains largely elusive about the specific mechanisms by which MPs affect hematopoietic stem cells (HSCs) and their clinical relevance in HSC transplantation (HSCT). Here, we established a long-term MPs intake mouse model and found that MPs caused severe damage to the hematopoietic system. Oral gavage administration of MPs or fecal transplantation of microbiota from MPs-treated mice markedly undermined the self-renewal and reconstitution capacities of HSCs. Mechanistically, MPs did not directly kill HSCs but disrupted gut structure and permeability, which eventually ameliorated the abundance of Rikenellaceae and hypoxanthine in the intestine and inactivated the HPRT-Wnt signaling in bone marrow HSCs. Furthermore, administration of Rikenellaceae or hypoxanthine in mice as well as treatment of WNT10A in the culture system substantially rescued the MPs-induced HSC defects. Finally, we validated in a cohort of human patients receiving allogenic HSCT from healthy donors, and revealed that the survival time of patients was negatively correlated with levels of MPs, while positively with the abundance of Rikenellaceae, and hypoxanthine in the HSC donors' feces and blood. Overall, our study unleashes the detrimental roles and mechanisms of MPs in HSCs, which provides potential strategies to prevent hematopoietic damage from MPs and serves as a fundamental critique for selecting suitable donors for HSCT in clinical practice.

5.
Cell Rep Med ; 5(2): 101400, 2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38307031

RESUMO

Chimeric antigen receptor (CAR)-T therapy has shown superior efficacy against hematopoietic malignancies. However, many patients failed to achieve sustainable tumor control partially due to CAR-T cell exhaustion and limited persistence. In this study, by performing single-cell multi-omics data analysis on patient-derived CAR-T cells, we identify CD38 as a potential hallmark of exhausted CAR-T cells, which is positively correlated with exhaustion-related transcription factors and further confirmed with in vitro exhaustion models. Moreover, inhibiting CD38 activity reverses tonic signaling- or tumor antigen-induced exhaustion independent of single-chain variable fragment design or costimulatory domain, resulting in improved CAR-T cell cytotoxicity and antitumor response. Mechanistically, CD38 inhibition synergizes the downregulation of CD38-cADPR -Ca2+ signaling and activation of the CD38-NAD+-SIRT1 axis to suppress glycolysis. Collectively, our findings shed light on the role of CD38 in CAR-T cell exhaustion and suggest potential clinical applications of CD38 inhibition in enhancing the efficacy and persistence of CAR-T cell therapy.


Assuntos
Neoplasias , Anticorpos de Cadeia Única , Humanos , Linfócitos T , Imunoterapia Adotiva/métodos , Antígenos de Neoplasias/metabolismo
6.
Hepatology ; 79(1): 167-182, 2024 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-37368993

RESUMO

BACKGROUND AND AIMS: Chronic hepatitis B (CHB) is caused by HBV infection and affects the lives of millions of people worldwide by causing liver inflammation, cirrhosis, and liver cancer. Interferon-alpha (IFN-α) therapy is a conventional immunotherapy that has been widely used in CHB treatment and achieved promising therapeutic outcomes by activating viral sensors and interferon-stimulated genes (ISGs) suppressed by HBV. However, the longitudinal landscape of immune cells of CHB patients and the effect of IFN-α on the immune system are not fully understood. APPROACH AND RESULTS: Here, we applied single-cell RNA sequencing (scRNA-seq) to delineate the transcriptomic landscape of peripheral immune cells in CHB patients before and after PegIFN-α therapy. Notably, we identified three CHB-specific cell subsets, pro-inflammatory (Pro-infla) CD14+ monocytes, Pro-infla CD16+ monocytes and IFNG+ CX3CR1- NK cells, which highly expressed proinflammatory genes and positively correlated with HBsAg. Furthermore, PegIFN-α treatment attenuated percentages of hyperactivated monocytes, increased ratios of long-lived naive/memory T cells and enhanced effector T cell cytotoxicity. Finally, PegIFN-α treatment switched the transcriptional profiles of entire immune cells from TNF-driven to IFN-α-driven pattern and enhanced innate antiviral response, including virus sensing and antigen presentation. CONCLUSIONS: Collectively, our study expands the understanding of the pathological characteristics of CHB and the immunoregulatory roles of PegIFN-α, which provides a new powerful reference for the clinical diagnosis and treatment of CHB.


Assuntos
Hepatite B Crônica , Humanos , Antivirais , Interferon-alfa , Transcriptoma , Análise de Sequência de RNA , Vírus da Hepatite B , Antígenos de Superfície da Hepatite B , Antígenos E da Hepatite B , DNA Viral
7.
J Hematol Oncol ; 16(1): 65, 2023 06 23.
Artigo em Inglês | MEDLINE | ID: mdl-37353849

RESUMO

Hematologic malignancies (HMs) pose a serious threat to patients' health and life, and the five-year overall survival of HMs remains low. The lack of understanding of the pathogenesis and the complex clinical symptoms brings immense challenges to the diagnosis and treatment of HMs. Traditional therapeutic strategies for HMs include radiotherapy, chemotherapy, targeted therapy and hematopoietic stem cell transplantation. Although immunotherapy and cell therapy have made considerable progress in the last decade, nearly half of patients still relapse or suffer from drug resistance. Recently, studies have emerged that nanomaterials, nanotechnology and nanomedicine show great promise in cancer therapy by enhancing drug targeting, reducing toxicity and side effects and boosting the immune response to promote durable immunological memory. In this review, we summarized the strategies of recently developed nanomaterials, nanotechnology and nanomedicines against HMs and then proposed emerging strategies for the future designment of nanomedicines to treat HMs based on urgent clinical needs and technological progress.


Assuntos
Neoplasias Hematológicas , Nanoestruturas , Neoplasias , Humanos , Nanomedicina , Recidiva Local de Neoplasia/tratamento farmacológico , Nanotecnologia , Nanoestruturas/uso terapêutico , Sistemas de Liberação de Medicamentos , Neoplasias Hematológicas/tratamento farmacológico , Neoplasias/terapia
8.
Front Mol Biosci ; 10: 1176416, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37065445

RESUMO

Hematopoietic stem cells (HSCs) developing from mesoderm during embryogenesis are important for the blood circulatory system and immune system. Many factors such as genetic factors, chemical exposure, physical radiation, and viral infection, can lead to the dysfunction of HSCs. Hematological malignancies (involving leukemia, lymphoma, and myeloma) were diagnosed in more than 1.3 million people globally in 2021, taking up 7% of total newly-diagnosed cancer patients. Although many treatments like chemotherapy, bone marrow transplantation, and stem cell transplantation have been applied in clinical therapeutics, the average 5-year survival rate for leukemia, lymphoma, and myeloma is about 65%, 72%, and 54% respectively. Small non-coding RNAs play key roles in a variety of biological processes, including cell division and proliferation, immunological response and cell death. With the development of technologies in high-throughput sequencing and bioinformatic analysis, there is emerging research about modifications on small non-coding RNAs, as well as their functions in hematopoiesis and related diseases. In this study, we summarize the updated information of small non-coding RNAs and RNA modifications in normal and malignant hematopoiesis, which sheds lights into the future application of HSCs into the treatment of blood diseases.

9.
J Hematol Oncol ; 16(1): 27, 2023 03 21.
Artigo em Inglês | MEDLINE | ID: mdl-36945063

RESUMO

Acute myeloid leukemia (AML) is a deadly hematological malignancy. Cellular morphology detection of bone marrow smears based on the French-American-British (FAB) classification system remains an essential criterion in the diagnosis of hematological malignancies. However, the diagnosis and discrimination of distinct FAB subtypes of AML obtained from bone marrow smear images are tedious and time-consuming. In addition, there is considerable variation within and among pathologists, particularly in rural areas, where pathologists may not have relevant expertise. Here, we established a comprehensive database encompassing 8245 bone marrow smear images from 651 patients based on a retrospective dual-center study between 2010 and 2021 for the purpose of training and testing. Furthermore, we developed AMLnet, a deep-learning pipeline based on bone marrow smear images, that can discriminate not only between AML patients and healthy individuals but also accurately identify various AML subtypes. AMLnet achieved an AUC of 0.885 at the image level and 0.921 at the patient level in distinguishing nine AML subtypes on the test dataset. Furthermore, AMLnet outperformed junior human experts and was comparable to senior experts on the test dataset at the patient level. Finally, we provided an interactive demo website to visualize the saliency maps and the results of AMLnet for aiding pathologists' diagnosis. Collectively, AMLnet has the potential to serve as a fast prescreening and decision support tool for cytomorphological pathologists, especially in areas where pathologists are overburdened by medical demands as well as in rural areas where medical resources are scarce.


Assuntos
Aprendizado Profundo , Neoplasias Hematológicas , Leucemia Mieloide Aguda , Humanos , Medula Óssea/patologia , Estudos Retrospectivos , Diagnóstico Diferencial , Leucemia Mieloide Aguda/patologia , Neoplasias Hematológicas/patologia
10.
Blood ; 141(14): 1691-1707, 2023 04 06.
Artigo em Inglês | MEDLINE | ID: mdl-36638348

RESUMO

Hematopoietic stem cell (HSC) aging is accompanied by hematopoietic reconstitution dysfunction, including loss of regenerative and engraftment ability, myeloid differentiation bias, and elevated risks of hematopoietic malignancies. Gut microbiota, a key regulator of host health and immunity, has recently been reported to affect hematopoiesis. However, there is currently limited empirical evidence explaining the direct impact of gut microbiome on aging hematopoiesis. In this study, we performed fecal microbiota transplantation (FMT) from young mice to aged mice and observed a significant increment in lymphoid differentiation and decrease in myeloid differentiation in aged recipient mice. Furthermore, FMT from young mice rejuvenated aged HSCs with enhanced short-term and long-term hematopoietic repopulation capacity. Mechanistically, single-cell RNA sequencing deciphered that FMT from young mice mitigated inflammatory signals, upregulated the FoxO signaling pathway, and promoted lymphoid differentiation of HSCs during aging. Finally, integrated microbiome and metabolome analyses uncovered that FMT reshaped gut microbiota composition and metabolite landscape, and Lachnospiraceae and tryptophan-associated metabolites promoted the recovery of hematopoiesis and rejuvenated aged HSCs. Together, our study highlights the paramount importance of the gut microbiota in HSC aging and provides insights into therapeutic strategies for aging-related hematologic disorders.


Assuntos
Transplante de Microbiota Fecal , Células-Tronco Hematopoéticas , Animais , Camundongos , Células-Tronco Hematopoéticas/metabolismo , Inflamação/terapia , Inflamação/metabolismo , Diferenciação Celular , Hematopoese
11.
Cell Mol Life Sci ; 80(2): 49, 2023 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-36690903

RESUMO

Haematopoietic Stem cells (HSCs) have the potential for self-renewal and multilineage differentiation, and their behaviours are finely tuned by the microenvironment. HSC transplantation (HSCT) is widely used in the treatment of haematologic malignancies while limited by the quantity of available HSCs. With the development of tissue engineering, hydrogels have been deployed to mimic the HSC microenvironment in vitro. Engineered hydrogels influence HSC behaviour by regulating mechanical strength, extracellular matrix microstructure, cellular ligands and cytokines, cell-cell interaction, and oxygen concentration, which ultimately facilitate the acquisition of sufficient HSCs. Here, we review recent advances in the application of hydrogel-based microenvironment engineering of HSCs, and provide future perspectives on challenges in basic research and clinical practice.


Assuntos
Neoplasias Hematológicas , Hidrogéis , Humanos , Células-Tronco Hematopoéticas , Diferenciação Celular , Citocinas , Nicho de Células-Tronco , Microambiente Tumoral
12.
Exp Hematol Oncol ; 12(1): 11, 2023 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-36653853

RESUMO

BACKGROUND: Adult hematopoietic stem cells (HSCs) homeostasis is critically important in maintaining lifelong hematopoiesis. However, how adult HSCs orchestrate its homeostasis remains not fully understood. Imprinted gene Dlk1 has been shown to play critical role in mouse embryonic hematopoiesis and in regulation of stem cells, but its physiological roles in adult HSCs are unknown. METHODS: We performed gene expression analysis of Dlk1, and constructed conditional Dlk1 knockout (KO) mice by crossing Mx1 cre mice with Dlkflox/flox mice. Western blot and quantitative PCR were used to detect Dlk1 KO efficiency. Flow cytometry was performed to investigate the effects of Dlk1 KO on HSCs, progenitors and linage cells in primary mice. Competitive HSCs transplantation and secondary transplantation was used to examine the effects of Dlk1 KO on long-term hematopoietic repopulation potential of HSCs. RNA-Seq and cell metabolism assays was used to determine the underlying mechanisms. RESULTS: Dlk1 was highly expressed in adult mice long-term HSCs (LT-HSCs) relative to progenitors and mature lineage cells. Dlk1 KO in adult mice HSCs drove HSCs enter active cell cycle, and expanded phenotypical LT-HSCs, but undermined its long-term hematopoietic repopulation potential. Dlk1 KO resulted in an increase in HSCs' metabolic activity, including glucose uptake, ribosomal translation, mitochondrial metabolism and ROS production, which impaired HSCs function. Further, Dlk1 KO in adult mice HSCs attenuated Notch signaling, and re-activation of Notch signaling under Dlk1 KO decreased the mitochondrial activity and ROS production, and rescued the changes in frequency and absolute number of HSCs. Scavenging ROS by antioxidant N-acetylcysteine could inhibit mitochondrial metabolic activity, and rescue the changes in HSCs caused by Dlk1 KO. CONCLUSION: Our study showed that Dlk1 played an essential role in maintaining HSC homeostasis, which is realized by governing cell cycle and restricting mitochondrial metabolic activity.

13.
Adv Exp Med Biol ; 1442: 29-44, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38228957

RESUMO

Hematopoietic stem cells (HSCs) are adult stem cells with the ability of self-renewal and multilineage differentiation into functional blood cells, thus playing important roles in the homeostasis of hematopoiesis and the immune response. Continuous self-renewal of HSCs offers fresh supplies for the HSC pool, which differentiate into all kinds of mature blood cells, supporting the normal functioning of the entire blood system. Nevertheless, dysregulation of the homeostasis of hematopoiesis is often the cause of many blood diseases. Excessive self-renewal of HSCs leads to hematopoietic malignancies (e.g., leukemia), while deficiency in HSC regeneration results in pancytopenia (e.g., anemia). The regulation of hematopoietic homeostasis is finely tuned, and the rapid development of high-throughput sequencing technologies has greatly boosted research in this field. In this chapter, we will summarize the recent understanding of epigenetic regulators including DNA methylation, histone modification, chromosome remodeling, noncoding RNAs, and RNA modification that are involved in hematopoietic homeostasis, which provides fundamental basis for the development of therapeutic strategies against hematopoietic diseases.


Assuntos
Hematopoese , Células-Tronco Hematopoéticas , Diferenciação Celular/genética , Hematopoese/genética , Homeostase , Epigênese Genética
14.
Blood Sci ; 4(3): 125-132, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-36518603

RESUMO

The maintenance of the mammalian blood system depends on hematopoietic stem cells (HSCs), which are a rare class of adult stem cells with self-renewal and multilineage differentiation capacities. The homeostasis of hematopoietic stem cells is finely tuned by a variety of endogenous and exogenous regulatory factors, and disrupted balance will lead to hematological diseases including leukemia and anemia. Recently, emerging studies have illustrated the cellular and molecular mechanisms underlying the regulation of HSC homeostasis. Particularly, the rapid development of second-generation sequencing technologies has uncovered that many small noncoding RNAs (ncRNAs) are highly expressed in HSCs, including snoRNAs, miRNAs, tsRNAs, circular RNAs, etc. In this study, we will summarize the essential roles and regulatory mechanisms of these small ncRNAs in maintaining HSC homeostasis. Overall, this review provides up-to-date information in the regulation of HSC homeostasis by small ncRNAs, which sheds light into the development of therapeutic strategies against hematopoietic malignancies.

15.
Front Oncol ; 12: 958187, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36249007

RESUMO

Background: Surgical resection could improve the survival of patients with early-stage small cell lung cancer (SCLC). However, there is a lack of dedicated studies concentrating on surgical treatment in older patients with T1-2N0M0 SCLC. Thus, we performed this population-based study to investigate whether older patients with T1-2N0M0 SCLC could benefit from surgery. Methods: We collected the data of patients with SCLC between 2000 and 2015 from the Surveillance, Epidemiology, and End Results Program database. Older patients (≥ 65 years) with T1-2N0M0 SCLC were included, and we converted the staging information into those of the eighth edition. The propensity score matching (PSM) was used to balance the distribution of clinical characteristics between surgery and no-surgery groups. Results: Before PSM, the distribution proportions of clinical characteristics in 1,229 patients were unbalanced. The Kaplan-Meier curves of overall survival (OS) and cancer-specific survival (CSS) showed that the patients in the surgery group were better than those in the non-surgery group (all P < 0.001). After 1:2 PSM, the distribution proportions of clinical characteristics in 683 patients were balanced (all P > 0.05). The OS and CSS of patients in the surgery group were still better than that of patients in the no-surgery group (all P < 0.001), and subgroup analysis showed that the surgery was a protective factor for OS and CSS in all clinical characteristics subgroups (almost P < 0.001). The multivariate Cox analysis further confirmed this result (OS: HR, 0.33; 95% CI, 0.27-0.39; P < 0.001; CSS: HR, 0.29; 95% CI, 0.23-0.36; P < 0.001). The result of subgroup analysis based on age, T stage, and adjuvant therapy showed that surgery was related to better OS and CSS compared with non-surgery group (almost P < 0.001) and that lobectomy exhibited the longer survival than sublobectomy. Age, sex, and race were the independent prognostic factors for OS in patients undergoing surgery, whereas only the factor of age affects the CSS in patients with surgery. Conclusions: Older patients with T1-2N0M0 SCLC can benefit significantly from surgical treatment, and lobectomy provides better prognosis than sublobectomy.

17.
Nat Commun ; 13(1): 5657, 2022 09 26.
Artigo em Inglês | MEDLINE | ID: mdl-36163326

RESUMO

DNA methyltransferase 3 A (DNMT3A) is the most frequently mutated gene in acute myeloid leukemia (AML). Although chemotherapy agents have improved outcomes for DNMT3A-mutant AML patients, there is still no targeted therapy highlighting the need for further study of how DNMT3A mutations affect AML phenotype. Here, we demonstrate that cell adhesion-related genes are predominantly enriched in DNMT3A-mutant AML cells and identify that graphdiyne oxide (GDYO) display an anti-leukemia effect specifically against these mutated cells. Mechanistically, GDYO directly interacts with integrin ß2 (ITGB2) and c-type mannose receptor (MRC2), which facilitate the attachment and cellular uptake of GDYO. Furthermore, GDYO binds to actin and prevents actin polymerization, thus disrupting the actin cytoskeleton and eventually leading to cell apoptosis. Finally, we validate the in vivo safety and therapeutic potential of GDYO against DNMT3A-mutant AML cells. Collectively, these findings demonstrate that GDYO is an efficient and specific drug candidate against DNMT3A-mutant AML.


Assuntos
DNA (Citosina-5-)-Metiltransferases , Leucemia Mieloide Aguda , Actinas/genética , Antígenos CD18 , DNA , DNA (Citosina-5-)-Metiltransferases/genética , DNA Metiltransferase 3A , Metilases de Modificação do DNA/genética , Grafite , Humanos , Leucemia Mieloide Aguda/tratamento farmacológico , Leucemia Mieloide Aguda/genética , Mutação , Óxidos
18.
Cancer Lett ; 550: 215920, 2022 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-36122628

RESUMO

Chimeric Antigen-Receptor (CAR) T-cell therapies have shown dramatic efficacy in treating relapsed and refractory cancers, especially B cell malignancies. However, these innovative therapies cause adverse toxicities that limit the broad application in clinical settings. Hematologic cytopenias, one frequently reported adverse event following CAR T cell treatment, are manifested as a disorder of hematopoiesis with decreased number of mature blood cells and subdivided into anemia, thrombocytopenia, leukopenia, and neutropenia, which increase the risk of infections, fatigue, bleeding, fever, and even fatality. Herein, we initially summarized the symptoms, etiology, risk factors and management of cytopenias. Further, we elaborated the cellular and molecular mechanisms underlying the initiation and progression of cytopenias following CAR T cell therapy based on previous studies about acquired cytopenias. Overall, this review will facilitate our understanding of the etiology of cytopenias and shed lights into developing new therapies against CAR T cell-induced cytopenias.


Assuntos
Anemia , Neoplasias Hematológicas , Neoplasias , Neutropenia , Trombocitopenia , Neoplasias Hematológicas/terapia , Humanos , Imunoterapia Adotiva/efeitos adversos , Neoplasias/etiologia , Linfócitos T , Trombocitopenia/etiologia
19.
Front Oncol ; 12: 939465, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36033520

RESUMO

Small nucleolar RNAs (snoRNAs) belong to a family of noncoding RNAs that are 60-300 nucleotides in length, and they are classified into two classes according to their structure and function: C/D box snoRNAs, playing an essential role in 2'-O-methylation modification on ribosomal RNA; H/ACA box snoRNAs, involved in the pseudouridylation of rRNA. SnoRNAs with unclear functions, no predictable targets, and unusual subcellular locations are called orphan snoRNAs. Recent studies have revealed abnormal expression and demonstrated the pivotal roles of snoRNAs and their host genes in various types of hematological malignancies. This review discusses recent discoveries concerning snoRNAs in a variety of hematological malignancies, including multiple myeloma, lymphoma and leukemia, and sheds light on the application of snoRNAs as diagnostic and prognostic markers as well as therapeutic targets of hematological malignancies in the future.

20.
Leukemia ; 36(11): 2656-2668, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35962059

RESUMO

Chimeric antigen receptor T cells (CAR-T) therapy has achieved remarkable therapeutic success in treating a variety of hematopoietic malignancies. However, the high relapse rate and poor in vivo persistence, partially caused by CAR-T cell exhaustion, are still important barriers against CAR-T therapy. It remains largely elusive on the mechanisms of CAR-T exhaustion and how to attenuate exhaustion to achieve better therapeutic efficacy. In this study, we initially observed that CAR-T cells showed rapid differentiation and increased exhaustion after co-culture with tumor cells in vitro, and then performed single-cell ATAC-seq to depict the comprehensive and dynamic landscape of chromatin accessibility of CAR-T cells during tumor cell stimulation. Analyses of differential chromatin accessible regions and motif accessibility revealed that TFs were distinct in each cell type and reconstituted a coordinated regulatory network to drive CAR-T exhaustion. Furthermore, we performed scATAC-seq in patient-derived CAR-T cells and identified BATF and IRF4 as pivotal regulators in CAR-T cell exhaustion. Finally, knockdown of BATF or IRF4 enhanced the killing ability, inhibited exhaustion, and prolonged the persistence of CAR-T cells in vivo. Together, our study unraveled the epigenetic regulatory mechanisms of CAR-T exhaustion and provided new insights into CAR-T engineering to achieve better clinical treatment benefits.


Assuntos
Cromatina , Receptores de Antígenos Quiméricos , Humanos , Cromatina/genética , Cromatina/metabolismo , Receptores de Antígenos Quiméricos/genética , Receptores de Antígenos Quiméricos/metabolismo , Sequenciamento de Cromatina por Imunoprecipitação , Recidiva Local de Neoplasia/metabolismo , Imunoterapia Adotiva , Linfócitos T
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...