Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Fish Physiol Biochem ; 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38951427

RESUMO

The metabotropic glutamate receptor (mGluR, GRM) family is involved in multiple signaling pathways and regulates neurotransmitter release. However, the evolutionary history, distribution, and function of the mGluRs family in lampreys have not been determined. Therefore, we identified the mGluRs gene family in the genome of Lethenteron reissneri, which has been conserved throughout vertebrate evolution. We confirmed that Lr-GRM3, Lr-GRM5, and Lr-GRM7 encode three types of mGluRs in lamprey. Additionally, we investigated the distribution of Lr-GRM3 within this species by qPCR and Western blotting. Furthermore, we conducted RNA sequencing to investigate the molecular function of Lr-GRM3 in lamprey. Our gene expression profile revealed that, similar to that in jawed vertebrates, Lr-GRM3 participates in multiple signal transduction pathways and influences synaptic excitability in lampreys. Moreover, it also affects intestinal motility and the inflammatory response in lampreys. This study not only enhances the understanding of mGluRs' gene evolution but also highlights the conservation of GRM3's role in signal transduction while expanding our knowledge of its functions specifically within lampreys. In summary, our experimental findings provide valuable insights for studying both the evolution and functionality of the mGluRs family.

2.
Mol Immunol ; 172: 47-55, 2024 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-38875755

RESUMO

3-phosphoinositide-dependent protein kinase-1 (PDK-1) is a key kinase regulating the activity of the PI3K/AKT pathway and a major regulator of the AGC protein kinase family. It is essential in the physiological activities of cells, embryonic development, individual development and immune response. In this study, we have identified for the first time an analogue of PDK-1 in the most primitive vertebrate, lamprey, and named it PDK-1-like. The protein sequence similarity of lamprey PDK-1-like to human, mouse, chicken, African xenopus and zebrafish PDK-1 were 64.4 %, 64.5 %, 65.0 %, 61.3 % and 63.2 %, respectively. The phylogenetic tree showed that PDK-1-like of lamprey were located at the base of the vertebrate branch, in line with the trend of biological evolution. Meanwhile, homology analysis showed that PDK-1 proteins across species shared a conserved kinase structural domain and a Pleckstrin Homology (PH) domain. Genomic synteny analysis revealed that the large-scale duplication blocks were not found in lamprey genome and neighbor genes of lamprey PDK-1-like presented dramatic differences compared with jawed vertebrates. More importantly, qPCR analysis showed that PDK-1-like was widely expressed in lamprey. Its mRNA expression levels varied in response to different pathogenic stimuli, and its expression was generally up-regulated under Polyinosinic-Polycytidylic acid (Poly(I:C)) stimulation. Pearson's correlation analysis showed that PDK-1-like was involved in co-expressed with MyD88-independent TLR-3 pathway during the immune response of lamprey, instead of MyD88-dependent TLR-3 pathway. In summary, our composite results offer valuable clues to the origin and evolution of PDK-1, and imply that PDK-1 s are among the most ancestral immune regulators in vertebrates.

3.
Fish Shellfish Immunol ; 150: 109622, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38740227

RESUMO

The voltage-dependent anion channel 2 (VDAC2) is the abundant protein in the outer mitochondrial membrane. Opening VDAC2 pores leads to the induction of mitochondrial energy and material transport, facilitating interaction with various mitochondrial proteins implicated in essential processes such as cell apoptosis and proliferation. To investigate the VDAC2 in lower vertebrates, we identified Lr-VDAC2, a homologue of VDAC2 found in lamprey (Lethenteron reissneri), sharing a sequence identity of greater than 50 % with its counterparts. Phylogenetic analysis revealed that the position of Lr-VDAC2 aligns with the lamprey phylogeny, indicating its evolutionary relationship within the species. The Lr-VDAC2 protein was primarily located in the mitochondria of lamprey cells. The expression of the Lr-VDAC2 protein was elevated in high energy-demanding tissues, such as the gills, muscles, and myocardial tissue in normal lampreys. Lr-VDAC2 suppressed H2O2 (hydrogen peroxide)-induced 293 T cell apoptosis by reducing the expression levels of Caspase 3, Caspase 9, and Cyt C (cytochrome c). Further research into the mechanism indicated that the Lr-VDAC2 protein inhibited the pro-apoptotic activity of BAK (Bcl-2 antagonist/killer) protein by downregulating its expression at the protein translational level, thus exerting an anti-apoptotic function similar to the role of VDAC2 in humans.


Assuntos
Apoptose , Proteínas de Peixes , Lampreias , Canal de Ânion 2 Dependente de Voltagem , Animais , Humanos , Sequência de Aminoácidos , Proteína Killer-Antagonista Homóloga a bcl-2/metabolismo , Regulação para Baixo/efeitos dos fármacos , Proteínas de Peixes/genética , Proteínas de Peixes/imunologia , Perfilação da Expressão Gênica/veterinária , Regulação da Expressão Gênica , Células HEK293 , Peróxido de Hidrogênio , Lampreias/genética , Lampreias/imunologia , Filogenia , Alinhamento de Sequência/veterinária , Canal de Ânion 2 Dependente de Voltagem/metabolismo
4.
Int J Mol Sci ; 25(1)2024 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-38203782

RESUMO

At present, there is a research gap concerning the specific functions and mechanisms of the Notch gene family and its signaling pathway in jawless vertebrates. In this study, we identified a Notch1 homologue (Lr. Notch1) in the Lethenteron reissneri database. Through bioinformatics analysis, we identified Lr. Notch1 as the likely common ancestor gene of the Notch gene family in higher vertebrates, indicating a high degree of conservation in the Notch gene family and its signaling pathways. To validate the biological function of Lr. Notch1, we conducted targeted silencing of Lr. Notch1 in L. reissneri and analyzed the resultant gene expression profile before and after silencing using transcriptome analysis. Our findings revealed that the silencing of Lr. Notch1 resulted in differential expression of pathways and genes associated with signal transduction, immune regulation, and metabolic regulation, mirroring the biological function of the Notch signaling pathway in higher vertebrates. This article systematically elucidated the origin and evolution of the Notch gene family while also validating the biological function of Lr. Notch1. These insights offer valuable clues for understanding the evolution of the Notch signaling pathway and establish a foundation for future research on the origin of the Notch signaling pathway, as well as its implications in human diseases and immunomodulation.


Assuntos
Biologia Computacional , Perfilação da Expressão Gênica , Humanos , Animais , Filogenia , Bases de Dados Factuais , Imunomodulação , Receptores Notch
5.
Int J Mol Sci ; 23(22)2022 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-36430927

RESUMO

Human B cell adaptor for phosphoinositide 3-kinase (BCAP) is identified as an adaptor protein expressed in B cells and plays a critical immunomodulatory role in B cell receptor signaling and humoral immune response. In the current study, a homolog of BCAP (Lja-BCAP) was identified in Lampetra japonica. The open reading frame of Lja-BCAP contains 2181bp nucleotides and encodes a protein of 726 amino acids. After being stimulated by mixed bacteria, the mRNA and protein expression levels of Lja-BCAP and the activation levels of tyrosine kinases increased significantly in peripheral blood lymphocytes, gills and supraneural myeloid bodies, respectively. However, after the knockdown of Lja-BCAP by RNAi in vivo, the activation of tyrosine kinases was inhibited in the above tissues, which indicated that Lja-BCAP participated in the anti-bacterial immune response of lampreys. After lipopolysaccharide (LPS) stimulation, the expression of Lja-BCAP in peripheral blood lymphocytes, gills and supraneural myeloid bodies were significantly up-regulated 2.5, 2.2, and 11.1 times (p < 0.05) compared to the control group, respectively; while after phytohemagglutinin (PHA) stimulation, the up-regulation of Lja-BCAP was only detected in peripheral blood lymphocytes. The above results show that Lja-BCAP mainly participates in the LPS-mediated immune response of lampreys.


Assuntos
Lampreias , Fosfatidilinositol 3-Quinases , Animais , Humanos , Lampreias/genética , Lampreias/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Fosfatidilinositol 3-Quinase/metabolismo , Lipopolissacarídeos/farmacologia , Lipopolissacarídeos/metabolismo , Proteínas Tirosina Quinases/metabolismo , Imunidade , Tirosina/metabolismo
6.
Cell Mol Biol Lett ; 27(1): 102, 2022 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-36418956

RESUMO

The innate immune system is the body's first line of defense against pathogens and involves antibody and complement system-mediated antigen removal. Immune-response-related complement molecules have been identified in lamprey, and the occurrence of innate immune response via the mannose-binding lectin-associated serine proteases of the lectin cascade has been reported. We have previously shown that lamprey (Lampetra japonica) serum can efficiently and specifically eliminate foreign pathogens. Therefore, we aimed to understand the immune mechanism of lamprey serum in this study. We identified and purified a novel spherical lectin (LSSL) from lamprey serum. LSSL had two structural calcium ions coordinated with conserved amino acids, as determined through cryogenic electron microscopy. LSSL showed high binding capacity with microbial and mammalian glycans and demonstrated agglutination activity against bacteria. Phylogenetic analysis revealed that LSSL was transferred from phage transposons to the lamprey genome via horizontal gene transfer. Furthermore, LSSL was associated with mannose-binding lectin-associated serine protease 1 and promoted the deposition of the C3 fragment on the surface of target cells upon binding. These results led us to conclude that LSSL initiates and regulates agglutination, resulting in exogenous pathogen and tumor cell eradication. Our observations will give a greater understanding of the origin and evolution of the complement system in higher vertebrates and lead to the identification of novel immune molecules and pathways for defense against pathogens and tumor cells.


Assuntos
Lampreias , Lectinas , Animais , Lampreias/metabolismo , Lectinas/metabolismo , Filogenia , Serina Proteases Associadas a Proteína de Ligação a Manose/genética , Serina Proteases Associadas a Proteína de Ligação a Manose/metabolismo , Lectinas de Ligação a Manose , Mamíferos
7.
Biochim Biophys Acta Mol Basis Dis ; 1868(12): 166493, 2022 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-35853560

RESUMO

The clinical management of bladder cancer (BCa) is hindered by the lack of reliable biomarkers. We aimed to investigate the potential of lamprey immunity protein (LIP), a lectin that specifically binds to multi-antennary sialylated N-glycolylneuraminic acid (Neu5Gc) structures on UMOD glycoproteins in the urine of BCa patients. Primary BCa patients had higher levels of LIP-bound Neu5Gc in urine than healthy participants and patients receiving postoperative treatment did. In addition, lectin chip assay and mass spectrometry were used to analyze the glycan chain structure, which can recognize the UMOD glycoprotein decorated with multi-antennary sialylated Neu5Gc structures. Furthermore, compared with urine samples from healthy patients (N = 2821, T/C = 0.12 ± 0.09) or benign patients (N = 360, T/C = 0.11 ± 0.08), the range of the urine T/C ratio detected using LIP test paper was 1.97 ± 0.32 in patients with bladder cancer (N = 518) with significant difference (P < 0.0001). Our results indicate that LIP may be a tool for early BCa identification, diagnosis, and monitoring. Neu5Gc-modified UMOD glycoproteins in urine and Neu5Gc-modified N-glycochains and sialyltransferases may function as potential markers in clinical trials.


Assuntos
Neoplasias da Bexiga Urinária , Animais , Biomarcadores , Glicoproteínas , Humanos , Lampreias/metabolismo , Lectinas/metabolismo , Polissacarídeos/química , Sialiltransferases , Neoplasias da Bexiga Urinária/diagnóstico , Uromodulina
9.
Enzyme Microb Technol ; 149: 109832, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34311877

RESUMO

Haloalkane dehalogenase DhaA catalyzes the hydrolytic cleavage of carbon-halogen bonds and produces alcohol, a proton and a halide. However, DhaA suffers from the poor environmental stability, such as sensitivity to high temperature, low pH, hypersaline and organic solvent. In order to improve the environmental stability of DhaA, DhaA was covalently conjugated with inulin, a hydrophilic polysaccharide in the present study. Each DhaA was averagely conjugated with 7∼8 inulin molecules. The conjugated inulin could form a hydration layer around DhaA, which increased the conformational rigidity and decreased the entropy of the enzyme. Conjugation of inulin maintained 75.5 % of the enzymatic activity of DhaA and slightly altered the structure of DhaA. As compared with DhaA, the conjugate (inu-DhaA) showed slightly different kinetic parameters (Km of 2.9 µmol/L and Kcat of 1.0 s-1). Inulin conjugation could delay the structural unfolding and/or slow the protonation process of DhaA under undesirable environment, including the long-term storage, low pH, hypersaline and organic solvent stability. As a result, the environmental stability of DhaA was markedly increased upon conjugation with inulin. Thus, inulin conjugation was an effective approach to enhance the environmental stability of DhaA.


Assuntos
Inulina , Rhodococcus , Hidrolases/genética , Hidrólise
11.
Mol Ecol Resour ; 21(2): 448-463, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33053263

RESUMO

The reissner lamprey Lethenteron reissneri, belonging to the class Cyclostomata, serves as a bridge between invertebrates and jawed vertebrates, and is considered the sister group of jawed vertebrates. However, despite this evolutionary significance, the genetic mechanisms underlying the adaptive evolution of the lamprey lineage remain unclear. Here, we assembled a 1.06 Gb chromosome-level draft genome of L. reissneri, with 72 chromosomes (ranging in length from 4.5 Mb to 25.9 Mb) and a scaffold N50 length of 13.23 Mb. Genome quality comparisons revealed that the reissner lamprey genome has higher completeness and contiguity than the previously published sea lamprey and Japanese lamprey genomes. Moreover, reissner lamprey, sea lamprey, and Japanese lamprey species share similar transposable element profiles and Hox gene cluster compositions, suggesting that a burst of transposable element activity and whole genome duplication occurred before their divergence. Additionally, the Lip gene copy numbers, which have been studied for their functions in the host defence system, were found to be expanded uniquely in lamprey lineages, suggesting key roles for these genes in lamprey evolution and adaptation. We also identified two neural-related genes, Nrn1 and Unc13a, with copy number expansions in jawed vertebrates, which may be functionally relevant to the origin of lamprey brains. Hence, this study not only provides the first chromosome-level reference genome for Cyclostomata, but also highlights features of the unique biology and adaptive evolution of the lamprey lineage.


Assuntos
Evolução Molecular , Lampreias , Animais , Cromossomos/genética , Genoma , Lampreias/genética , Filogenia
12.
Front Immunol ; 11: 1751, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32849624

RESUMO

Apolipoprotein (APO) genes represent a large family of genes encoding various binding proteins associated with plasma lipid transport. Due to the long divergence history, it remains to be confirmed whether these genes evolved from a common ancestor through gene duplication and original function, and how this evolution occurred. In this study, based on the phylogenetic tree, sequence alignment, motifs, and evolutionary analysis of gene synteny and collinearity, APOA, APOC, and APOE in higher vertebrates may have a common ancestor, lamprey serum apolipoprotein LAL1 or LAL2, which traces back to 360 million years ago. Moreover, the results of immunofluorescence, immunohistochemistry, and flow cytometry show that LAL2 is primarily distributed in the liver, kidney, and blood leukocytes of lampreys, and specifically localized in the cytoplasm of liver cells and leukocytes, as well as secreted into sera. Surface plasmon resonance technology demonstrates that LAL2 colocalizes to breast adenocarcinoma cells (MCF-7) or chronic myeloid leukemia cells (K562) associated with lamprey immune protein (LIP) and further enhances the killing effect of LIP on tumor cells. In addition, using quantitative real-time PCR (Q-PCR) and western blot methods, we found that the relative mRNA and protein expression of lal2 in lamprey leukocytes and sera increased significantly at different times after stimulating with Staphylococcus aureus, Vibrio anguillarum, and Polyinosinic-polycytidylic acid (Poly I:C). Moreover, LAL2 was found to recognize and bind to gram-positive bacteria (Staphylococcus aureus and Bacillus cereus) and gram-negative bacteria (Escherichia coli) and play an important role in the antibacterial process. All in all, our data reveals a long, complex evolutionary history for apolipoprotein genes under different selection pressures, confirms the immune effect of LAL2 in lamprey sera against pathogens, and lays the foundation for further research regarding biological functions of lamprey immune systems.


Assuntos
Apolipoproteínas/genética , Evolução Molecular , Proteínas de Peixes/genética , Lampreias/genética , Família Multigênica , Animais , Antineoplásicos/farmacologia , Apolipoproteínas/sangue , Apolipoproteínas/metabolismo , Apolipoproteínas/farmacologia , Bacillus cereus/imunologia , Bacillus cereus/metabolismo , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/patologia , Sinergismo Farmacológico , Escherichia coli/imunologia , Escherichia coli/metabolismo , Feminino , Proteínas de Peixes/sangue , Proteínas de Peixes/metabolismo , Proteínas de Peixes/farmacologia , Interações Hospedeiro-Patógeno , Humanos , Células K562 , Lampreias/sangue , Lampreias/imunologia , Lampreias/microbiologia , Leucemia Mielogênica Crônica BCR-ABL Positiva/tratamento farmacológico , Leucemia Mielogênica Crônica BCR-ABL Positiva/patologia , Células MCF-7 , Filogenia , Staphylococcus aureus/imunologia , Staphylococcus aureus/metabolismo
13.
Fish Shellfish Immunol ; 106: 307-317, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32681885

RESUMO

The complement component 3 of the lamprey, a jawless vertebrate, functions as an opsonin during the phagocytosis of rabbit red cells. Furthermore, lamprey C3 may be activated and cleaved into C3b, which is attached to the surface of target cells in the cytolytic process. However, the mechanism mediating the biological function of C3 in the lamprey is unknown. To our knowledge, this study is the first to show that variable lymphocyte receptors (VLRs) expression were significantly affected by complement C3 knockdown morphants in Lampetra morii. We identified the C3 gene in the lamprey genome based on its orthologs, conserved synteny, functional domains, phylogenetic tree, and conserved motifs. Additionally, we determined the optimal infection concentration of Aeromonas hydrophila to perform immune stimulation experiments in the lamprey larvae. The quantitative real-time polymerase chain reaction and immunofluorescence analyses revealed that the expression of Lampetra morii C3 (lmC3) was significantly upregulated in the larvae infected with 107 CFU/mL of A. hydrophila. The lmC3 morphants (lmC3 MO) of lamprey larvae were generated by morpholino-mediated knockdown. The lmC3 MO larvae were highly susceptible to A. hydrophila infection, which indicated that lmC3 is critical in lamprey immune response. The expression of a selected panel of orthologous genes was comparatively analyzed in the infected wild type, infected lmC3 MO, infected control MO, uninfected wild type and uninfected lmC3 MO one-month-old ammocoete larvae. The knockdown of lmC3 strongly affected the expression of VLRA+/VLRB+/VLRC+-associated genes, which was also confirmed by immunohistochemical analysis. Thus, VLR expression were significantly affected by complement C3 knockdown morphants in Lampetra morii.


Assuntos
Complemento C3/genética , Complemento C3/imunologia , Doenças dos Peixes/imunologia , Regulação da Expressão Gênica/imunologia , Lampreias/genética , Lampreias/imunologia , Aeromonas hydrophila/fisiologia , Animais , Proteínas de Peixes/genética , Proteínas de Peixes/imunologia , Técnicas de Silenciamento de Genes , Infecções por Bactérias Gram-Negativas/imunologia , Infecções por Bactérias Gram-Negativas/veterinária
14.
Fish Shellfish Immunol ; 105: 446-456, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32512043

RESUMO

In jawed vertebrates, B cell receptors (BCR) are primary pathogen detectors that activate downstream signaling pathways to express adaptive immune effectors. In jawless vertebrates, the variable lymphocyte receptors (VLR) B positive lymphocytes can express and secrete specific VLRB molecules in an analogous manner to that of immunoglobulins by B cells in jawed vertebrates. Our study is the first to demonstrate the possibility of incubation of fertilized eggs and artificial breeding of Lampetra morii larvae throughout their life cycle under laboratory condition. We also found that VLRB, lamprey B-cell linker (L-BLNK), and lamprey nuclear factor-kappa B (L-NF-κB) play key roles in early larval development. Aeromonas hydrophila was found to be a lethal pathogen of L. morii larvae causing rapid infection at a concentration of 107 cfu/mL qRT-PCR results revealed that gene expression levels of VLRB, L-BLNK, and L-NF-κB were up-regulated significantly. Ten-day infection trials showed that VLRB, L-BLNK, and L-NF-κB are crucial for lamprey immune response. Furthermore, the expression levels of L-BLNK and L-NF-κB were down-regulated drastically both at mRNA and protein levels after bacterial infection than in the naive group of VLRB morphants. A similar expression pattern of VLRB and L-BLNK was found in L-NF-κB morphants post bacterial infection. The results were strikingly different in the other two morphants. The VLRB and L-NF-κB expression levels were found to be down-regulated at mRNA and protein levels by less than 30% and 45%, respectively, in L-BLNK morphants compared to those in the naive group. These results indicate that L-BLNK and L-NF-κB might participate in VLRB-mediated immune response. Additionally, in VLRB morphants, the mRNA expression levels of some genes, especially the ones expressed in VLRB+ lymphocytes but not in VLRA+ lymphocytes, were found to be affected. Therefore, these findings of B-like lymphocytes in lamprey offer key evidence with regard to the evolution of adaptive immunity.


Assuntos
Proteínas de Peixes/genética , Interações Hospedeiro-Patógeno/imunologia , Lampreias/imunologia , Transdução de Sinais/imunologia , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Animais , Regulação para Baixo , Proteínas de Peixes/metabolismo , Lampreias/genética , Lampreias/crescimento & desenvolvimento , NF-kappa B/metabolismo
15.
Dev Comp Immunol ; 111: 103750, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32447013

RESUMO

In jawless vertebrates, the lamprey complement component C1q (LC1q) acts as a lectin and activates lamprey complement component C3 (LC3) in association with mannose-binding lectin (MBL)-associated serine protease (MASP) via the lectin pathway. Furthermore, LC1q may interact with variable lymphocyte receptor B (VLRB) in a complex with antigens and mediate the activation of LC3, leading to cytolysis. In the present study, we found, for the first time, that LC1q plays a critical role in VLRA/VLRC-mediated immune response. Escherichia coli, Shigella flexneri, Aeromonas hydrophila, Pseudomonas plecoglossicida, Aeromonas allosaccharophila, P. luteola, Brevundimonas diminuta, and Bacillus cereus were isolated from infected Lampetra morii in our laboratory and identified using the 16s rRNA method. A. hydrophila was confirmed as a rapidly spreading lethal pathogen in the larvae of L. morii and was used in subsequent immune stimulation experiments. The results of real-time quantitative polymerase chain reaction (Q-PCR) and immunofluorescence analyses indicated that the RNA and protein expression levels of LC1q were upregulated following exposure to 107 cfu/mL of A. hydrophila, compared to the levels of the naïve group. We obtained LC1q morphants (LC1q MO) of lamprey larvae by morpholino-mediated knockdowns. We found that LC1q played key roles in the embryonic development of lamprey. The median lethal time (LT50) of LC1q MO larvae was 2 d after being exposed to the pathogens, whereas the LT50 of control MO was 5 d. The drastic decrease in LT50 values after LC1q knockdown implies that LC1q plays a critical role in lamprey immune response. Gene expression profiles of LC1q-deficient A. hydrophila, control MO A. hydrophila, wild type A. hydrophila, and naive 1-month-old ammocoetes larvae were compared by examining the expression levels of a selected panel of orthologous genes. It is worth mentioning that LC1q MO affected the VLRA+/VLRC + population genes but did not affect the VLRB + populations. Immunohistochemical data indicated that LC1q deficiency also affected VLRA and VLRC but not VLRB. Thus, LC1q plays a critical role in VLRA/VLRC-mediated immune response in lamprey.


Assuntos
Aeromonas hydrophila/fisiologia , Complemento C1q/metabolismo , Proteínas de Peixes/metabolismo , Infecções por Bactérias Gram-Negativas/imunologia , Lampreias/imunologia , Linfócitos/imunologia , Receptores de Antígenos/metabolismo , Animais , Células Cultivadas , Complemento C1q/genética , Complemento C3/metabolismo , Lectina de Ligação a Manose da Via do Complemento , Citotoxicidade Imunológica , Desenvolvimento Embrionário/genética , Proteínas de Peixes/genética , Técnicas de Silenciamento de Genes , Imunidade , Larva , Receptores de Antígenos/genética , Regulação para Cima
17.
Yi Chuan ; 42(2): 183-193, 2020 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-32102775

RESUMO

The protein tyrosine phosphatase SHP2 of higher vertebrates, encoded by ptpn11 gene, catalyzes the dephosphorylation of tyrosine phosphorylation site, and plays regulatory roles in various signaling pathways by cooperating with other protein tyrosine kinase. Previous studies have shown that SHP2 plays an important role in the activation and signal transduction of T and B cells in higher vertebrates. To study the role of a SHP2 homologous molecule of lampreys (Lja-SHP2) in immune response, we cloned and expressed the open reading frame sequence of Lja-SHP2 gene in prokaryotic expression vector pET-32a. The recombinant protein was successfully expressed in E. coli and the rabbit-derived polyclonal antibody was prepared. Lampetra japonica were immunized with mixed bacteria, and the mRNA and protein of Lja-SHP2 in immune-related cells and tissues were detected by real-time quantitative PCR and Western blotting after immunization. The Lja-SHP2 mRNA and protein were not significantly affected in leukocytes and supraneural myeloid bodies, but up-regulated significantly in gill tissues (P<0.05) after challenged by mixed bacteria, which indicated that Lja-SHP2 mainly participates in the immune response of gill tissues after mixed bacteria stimulation. To further investigate whether Lja-SHP2 level was affected in three lymphocyte subsets, the B-cell mitogen lipopolysaccharide (LPS) and T-cell mitogen phytohaemagglutinin (PHA) were employed to boost the immune response in L. japonica. LPS immune stimulation increased Lja-SHP2 in leucocytes significantly compared with the control group, and but had a marginal effect on Lja-SHP2 expression in gills and supraneural myeloid bodies. PHA immune stimulation could up-regulate Lja-SHP2 level in leukocytes, gill tissues and supraneural myeloid bodies. The change of Lja-SHP2 was especially dramatical in leukocytes, which was about 2.5 times higher than that in the control group, suggesting that Lja-SHP2 is involved in the lamprey immune response mediated by PHA. Consistent with the previous finding that PHA could induce the activation of VLRA+ lymphocytes, our results showed that Lja-SHP2 might be included in the immune response of VLRA+ lymphocytes mediated by PHA in gills. This research will benefit exploring the functions of Lja-SHP2 in the immune response of lamprey and will provide clues for understanding the phylogenesis of SHP2 molecular family, and its roles in the early occurrence and evolution of adaptive immune system in higher vertebrates.


Assuntos
Proteínas de Peixes/genética , Proteínas de Peixes/imunologia , Lampreias/genética , Proteína Tirosina Fosfatase não Receptora Tipo 11/genética , Proteína Tirosina Fosfatase não Receptora Tipo 11/imunologia , Animais , Lampreias/imunologia , Linfócitos/imunologia , Filogenia , Proteínas Recombinantes
18.
Cell Commun Signal ; 17(1): 54, 2019 05 27.
Artigo em Inglês | MEDLINE | ID: mdl-31133022

RESUMO

BACKGROUND: In previous research, we found that lamprey immune protein (LIP) possessed cytocidal activity against tumor cells, but the mechanism of the selective recognition and killing of tumor cells by LIP was not identified. METHODS: Superresolution microscopy, crystallographic structural analysis, glycan chip assay, SPR experiments, FACS assays, computational studies and mass spectrometric analysis firmly establish the mode of action of LIP, which involves dual selective recognition and efficient binding. RESULTS: We determined the overall crystallographic structure of LIP at a resolution of 2.25 Å. LIP exhibits an elongated structure with dimensions of 105 Å × 30 Å × 30 Å containing an N-terminal lectin module and a C-terminal aerolysin module. Moreover, the Phe209-Gly232 region is predicted to insert into the lipid bilayer to form a transmembrane ß-barrel, in which the hydrophobic residues face the lipid bilayer, and the polar residues constitute the hydrophilic lumen of the pore. We found that LIP is able to kill various human cancer cells with minimal effects on normal cells. Notably, by coupling biochemical and computational studies, we propose a hypothetical mechanism that involves dual selective recognition and efficient binding dependent on both N-linked glycans on GPI-anchored proteins (GPI-APs) and sphingomyelin (SM) in lipid rafts. Furthermore, specific binding of the lectin module with biantennary bisialylated nonfucosylated N-glycan or sialyl Lewis X-containing glycan structures on GPI-APs triggers substantial conformational changes in the aerolysin module, which interacts with SM, ultimately resulting in the formation of a membrane-bound oligomer in lipid rafts. CONCLUSIONS: LIP holds great potential for the application of a marine protein towards targeted cancer therapy and early diagnosis in humans.


Assuntos
Antineoplásicos/química , Citotoxinas/química , Proteínas de Peixes/química , Lampreias/metabolismo , Microdomínios da Membrana/efeitos dos fármacos , Animais , Antineoplásicos/farmacologia , Linhagem Celular Tumoral , Citotoxinas/farmacologia , Proteínas de Peixes/farmacologia , Proteínas Ligadas por GPI/metabolismo , Humanos , Lectinas/metabolismo , Microdomínios da Membrana/metabolismo , Simulação de Dinâmica Molecular , Ligação Proteica , Esfingomielinas/metabolismo
19.
Acta Biochim Biophys Sin (Shanghai) ; 50(11): 1158-1165, 2018 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-30260364

RESUMO

The cluster of differentiation 81 (CD81), a member of the transmembrane 4 superfamily, is primarily found to be expressed in a wide variety of cells including T and B cells of vertebrates as a critical modulator. In the present study, the open reading frame of a CD81 gene homolog (Lja-CD81) was cloned in lamprey, Lampetra japonica, which is 702 bp long and encodes a protein of 233-amino acids. Although Lja-CD81 seems to be close to CD9 molecules in their full-length sequences, Lja-CD81 possesses higher identity to vertebrates' CD81 than to CD9 (including a lamprey CD9) molecules in their large extracellular loops. In addition, it also possesses a myristoylation site (Met-Gly-Val-Glu-Gly-Cys-Leu-Lys) in its N-terminal region which is identical to the N-terminal regions of CD81 molecules. These data suggest that CD9 and CD81 molecules diverged no later than the emergence of jawless vertebrates. The mRNA levels of Lja-CD81 in lymphocytes and supraneural myeloid bodies were up-regulated significantly after stimulation with mixed antigens, and a similar expressional pattern of Lja-CD81 at protein level was also confirmed. Furthermore, Lja-CD81 was found to be co-localized with variable lymphocyte receptor B (VLRB) evenly on the cell membrane of peripheral blood lymphocytes isolated from control group, but they were found to aggregate on one side of the membrane of peripheral blood VLRB+ lymphocytes after stimulation with mixed antigens. All these results indicate that the Lja-CD81 identified in lamprey may play an important role in the immune response of lamprey VLRB+ lymphocytes.


Assuntos
Proteínas de Peixes/imunologia , Lampreias/imunologia , Linfócitos/imunologia , Receptores de Antígenos/imunologia , Tetraspanina 28/imunologia , Sequência de Aminoácidos , Animais , Western Blotting , Clonagem Molecular , Proteínas de Peixes/genética , Proteínas de Peixes/metabolismo , Perfilação da Expressão Gênica , Lampreias/genética , Lampreias/metabolismo , Linfócitos/metabolismo , Microscopia Confocal , Receptores de Antígenos/genética , Receptores de Antígenos/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Análise de Sequência de DNA , Homologia de Sequência de Aminoácidos , Tetraspanina 28/genética , Tetraspanina 28/metabolismo
20.
Mol Biol Evol ; 35(9): 2272-2283, 2018 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-29961894

RESUMO

Human skin color diversity is considered an adaptation to environmental conditions such as UV radiation. Investigations into the genetic bases of such adaptation have identified a group of pigmentation genes contributing to skin color diversity in African and non-African populations. Here, we present a population analysis of the pigmentation gene KITLG with previously reported signal of Darwinian positive selection in both European and East Asian populations. We demonstrated that there had been recurrent selective events in the upstream and the downstream regions of KITLG in Eurasian populations. More importantly, besides the expected selection on the KITLG variants favoring light skin in coping with the weak UV radiation at high latitude, we observed a KITLG variant showing adaptation to winter temperature. In particular, compared with UV radiation, winter temperature showed a much stronger correlation with the prevalence of the presumably adaptive KITLG allele in Asian populations. This observation was further supported by the in vitro functional test at low temperature. Consequently, the pleiotropic effects of KITLG, that is, pigmentation and thermogenesis were both targeted by natural selection that acted on different KITLG sequence variants, contributing to the adaptation of Eurasians to both UV radiation and winter temperature at high latitude areas.


Assuntos
Aclimatação/genética , Povo Asiático/genética , Seleção Genética , Pigmentação da Pele/genética , Fator de Células-Tronco/genética , Temperatura Baixa , Feminino , Humanos , Masculino , Raios Ultravioleta
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...