Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Materials (Basel) ; 15(18)2022 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-36143719

RESUMO

To optimize the microstructure and properties of TC4 specimens formed by selective laser melting (SLM), the test program of formed specimens by the variable parameter forming process (VPFP) was designed based on the quantitative parameter forming process (QPFP). The purpose of this study is to explore the influence of the VPFP on the surface morphology, tensile properties, and microstructure of the specimens. The test results show that the surface morphology and tensile properties of the specimens were better formed by the VPFP. The internal holes of the specimens formed by the VPFP were small in volume and occupied a relatively small proportion, and the density could reach 99.7%. When the laser power was 300 W-260 W and equally divided into six hierarchies, the tensile strength could reach 1185.214 MPa by VPFP, but the elongation had no obvious change. The number of secondary acicular martensite α' phases was decreased in the microstructure of the specimens formed with VPFP. With the superposition of the hierarchy, the length of the primary acicular martensite α' phase became shorter, the width became larger, and the width of the columnar crystal ß phase became smaller. The VPFP is used to change the inherent method of forming specimens with the same parameters, which provides a new idea for SLM-forming structures; the test provides data and yields a theoretical research basis for forming the specimens process method.

2.
Sensors (Basel) ; 22(3)2022 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-35161633

RESUMO

Frozen soils are encountered on construction sites in the polar regions or regions where artificial frozen ground (AFG) methods are used. Thus, efficient ways to monitor the behavior and potential failure of frozen soils are currently in demand. The advancement of thermographic technology presents an alternative solution as deformation occurring in frozen soils generate heat via inter-particle friction, and thus a subsequent increase in temperature. In this research, uniaxial compression tests were conducted on cylindrical frozen soil specimens of three types, namely clay, sand, and gravel. During the tests, surface temperature profiles of the specimens were recorded through an infrared video camera. The thermographic videos were analyzed, and subsequent results showed that temperature increases caused by frictional heat could be observed in all three frozen soil specimens. Therefore, increases in temperature can be deemed as an indicator for the potential failure of frozen soils and this method is applicable for monitoring purposes.


Assuntos
Poluentes do Solo , Solo , Argila , Congelamento , Termografia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...