Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 49
Filtrar
1.
BMC Pregnancy Childbirth ; 24(1): 463, 2024 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-38969992

RESUMO

BACKGROUND: Cesarean hysterectomy as a traditional therapeutic maneuver for placenta accreta spectrum (PAS) has been associated with serious morbidity, conservative management has been used in many institutions to treat women with PAS. This systematic review aims to compare maternal outcomes according to conservative management or cesarean hysterectomy in women with placenta accreta spectrum disorders. METHODS: A systematic literature search was performed in MEDLINE, EMBASE, Cochrane Central Register of Controlled Trials, Web of Science, and four Chinese databases (Chinese Biomedical Literature Database, China National Knowledge Infrastructure, Chinese Wanfang database and VIP database) to May 2024. Included studies were to be retrospective or prospective in design and compare and report relevant maternal outcomes according to conservative management (the placenta left partially or totally in situ) or cesarean hysterectomy in women with PAS. A risk ratio (RR) with 95% confidence interval (95% CI) was calculated for categorical outcomes and weighted mean difference (WMD) with 95% CI for continuous outcomes. The Newcastle-Ottawa Quality Assessment Scale was used to assess the observational studies. All analyses were performed using STATA version 18.0. RESULTS: Eight studies were included in the meta-analysis. Compared with cesarean hysterectomy, PAS women undergoing conservative management showed lower estimated blood loss [WMD - 1623.83; 95% CI: -2337.87, -909.79], required fewer units of packed red blood cells [WMD - 2.37; 95% CI: -3.70, -1.04] and units of fresh frozen plasma transfused [WMD - 0.40; 95% CI: -0.62, -0.19], needed a shorter mean operating time [WMD - 73.69; 95% CI: -90.52, -56.86], and presented decreased risks of bladder injury [RR 0.24; 95% CI: 0.11, 0.50], ICU admission [RR 0.24; 95% CI: 0.11, 0.52] and coagulopathy [RR 0.20; 95% CI: 0.06, 0.74], but increased risk for endometritis [RR 10.91; 95% CI: 1.36, 87.59] and readmission [RR 8.99; 95% CI: 4.00, 12.21]. The incidence of primary or delayed hysterectomy rate was 25% (95% CI: 19-32, I2 = 40.88%) and the use of uterine arterial embolization rate was 78% (95% CI: 65-87, I2 = 48.79%) in conservative management. CONCLUSION: Conservative management could be an effective alternative to cesarean hysterectomy when women with PAS desire to preserve the uterus and are informed about the limitations of conservative management. PROSPERO ID: CRD42023484578.


Assuntos
Cesárea , Tratamento Conservador , Histerectomia , Placenta Acreta , Humanos , Placenta Acreta/cirurgia , Placenta Acreta/terapia , Feminino , Gravidez , Cesárea/efeitos adversos , Tratamento Conservador/métodos , Histerectomia/métodos , Perda Sanguínea Cirúrgica , Resultado do Tratamento , Transfusão de Sangue/estatística & dados numéricos
2.
Adv Mater ; : e2403908, 2024 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-38828745

RESUMO

The development of high-performance polymer is crucial for the fabrication of triboelectric nanogenerators (TENGs) used in extreme conditions. Liquid crystal polyarylate thermosets (LCTs) demonstrate great potential as triboelectric material by virtue of exceptional comprehensive properties. However, there are only a few specific end-groups like phenylethynyl matching the LCT polycondensation temperature (above 300 °C). Moreover, the excellent properties of LCTs rely on the crosslinked network formed with long curing time at high temperature, restricting their further application in triboelectric material. Herein, a fast-curing LCT is designed by terminating with 4-maleimidophenol possessing appropriate reactivity. The resultant LCT (MA-LC-MA) exhibits much lower polycondensation temperature (250-270 °C) and curing temperature of 300 °C within only 1 min compared to typical LCTs (cured at 370 °C for 1 h). Furthermore, the cured MA-LC-MA retains a high glass transition temperature of 135 °C, storage modulus of 6 MPa even at 350 °C, and great electrical output performance. Additionally, triboelectric measurement related to the dielectric properties that vary with crosslinked network is innovatively utilized as an analysis technique of curing progress. This work provides a new strategy to design high-performance TENGs and promotes the development of next generation thermosets in extreme conditions.

3.
Adv Sci (Weinh) ; : e2402319, 2024 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-38924683

RESUMO

Graphene films grown by the chemical vapor deposition (CVD) method suffer from contamination and damage during transfer. Herein, an innovative ice-enabled transfer method under an applied electric field and in the presence of Cu2O (or Cu2O-Electric-field Ice Transfer, abbreviated as CEIT) is developed. Ice serves as a pollution-free transfer medium while water molecules under the electric field fully wet the graphene surface for a bolstered adhesion force between the ice and graphene. Cu2O is used to reduce the adhesion force between graphene and copper. The combined methodology in CEIT ensures complete separation and clean transfer of graphene, resulting in successfully transferred graphene to various substrates, including polydimethylsiloxane (PDMS), Teflon, and C4F8 without pollution. The graphene obtained via CEIT is utilized to fabricate field-effect transistors with electrical performances comparable to that of intrinsic graphene characterized by small Dirac points and high carrier mobility. The carrier mobility of the transferred graphene reaches 9090 cm2 V-1 s-1, demonstrating a superior carrier mobility over that from other dry transfer methods. In a nutshell, the proposed clean and efficient transfer method holds great potential for future applications of graphene.

4.
Research (Wash D C) ; 7: 0363, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38694198

RESUMO

Combined hyperlipidemia (CHL) manifests as elevated cholesterol and triglycerides, associated with fatty liver and cardiovascular diseases. Emerging evidence underscores the crucial role of the intestinal microbiota in metabolic disorders. However, the potential therapeutic viability of remodeling the intestinal microbiota in CHL remains uncertain. In this study, CHL was induced in low-density lipoprotein receptor-deficient (LDLR-/-) hamsters through an 8-week high-fat and high-cholesterol (HFHC) diet or a 4-month high-cholesterol (HC) diet. Placebo or antibiotics were administered through separate or cohousing approaches. Analysis through 16S rDNA sequencing revealed that intermittent antibiotic treatment and the cohousing approach effectively modulated the gut microbiota community without impacting its overall abundance in LDLR-/- hamsters exhibiting severe CHL. Antibiotic treatment mitigated HFHC diet-induced obesity, hyperglycemia, and hyperlipidemia, enhancing thermogenesis and alleviating nonalcoholic steatohepatitis (NASH), concurrently reducing atherosclerotic lesions in LDLR-/- hamsters. Metabolomic analysis revealed a favorable liver lipid metabolism profile. Increased levels of microbiota-derived metabolites, notably butyrate and glycylglycine, also ameliorated NASH and atherosclerosis in HFHC diet-fed LDLR-/- hamsters. Notably, antibiotics, butyrate, and glycylglycine treatment exhibited protective effects in LDLR-/- hamsters on an HC diet, aligning with outcomes observed in the HFHC diet scenario. Our findings highlight the efficacy of remodeling gut microbiota through antibiotic treatment and cohousing in improving obesity, NASH, and atherosclerosis associated with refractory CHL. Increased levels of beneficial microbiota-derived metabolites suggest a potential avenue for microbiome-mediated therapies in addressing CHL-associated diseases.

5.
Sensors (Basel) ; 24(9)2024 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-38732952

RESUMO

Orthogonal chirp division multiplexing (OCDM) offers a promising modulation technology for shallow water underwater acoustic (UWA) communication systems due to multipath fading resistance and Doppler resistance. To handle the various channel distortions and interferences, obtaining accurate channel state information is vital for robust and efficient shallow water UWA communication. In recent years, deep learning has attracted widespread attention in the communication field, providing a new way to improve the performance of physical layer communication systems. In this paper, the pilot-based channel estimation is transformed into a matrix completion problem, which is mathematically equivalent to the image super-resolution problem arising in the field of image processing. Simulation results show that the deep learning-based method can improve the channel distortion, outperforming the equalization performed by traditional estimator, the performance of Bit Error Rate is improved by 2.5 dB compared to the MMSE method in OCDM system. At the 7.5 to 20 dB region, it achieves better bit error rate performance than OFDM systems, and the bit error rate is reduced by approximately 53% compared to OFDM when the SNR value is 20, which is very useful in shallow water UWA channels with multipath extension and severe time-varying characteristics.

6.
Front Neurol ; 15: 1366796, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38660091

RESUMO

Objective: The aim of this study was to compare the clinical outcomes of spinal cord stimulation (SCS) and dorsal root ganglion stimulation (DRG-S) in the treatment of painful diabetic peripheral neuropathy (PDPN). Methods: In this prospective cohort study, 55 patients received dorsal column spinal cord stimulation (SCS group) and 51 patients received dorsal root spinal cord stimulation (DRG-S group). The primary outcome was a Numerical Rating Scale (NRS) remission rate of ≥50%, and secondary outcomes included the effects of SCS and DRG-S on quality of life scores (EQ-5D-3L), nerve conduction velocity, and HbA1c, respectively. Results: The percentage of NRS remission rate ≥ 50% at 6 months was 80.43 vs. 79.55%, OR (95% CI): 1.06 (0.38-2.97) in the SCS and DRG-S groups, respectively, and the percentage of VAS remission rate ≥ 50% at 12 months was 79.07 vs. 80.95%, OR (95% CI): 0.89 (0.31-2.58). Compared with baseline, there were significant improvements in EQ-5D and EQ-VAS at 6 and 12 months (p < 0.05), but there was no difference in improvement between the SCS and DRG-S groups (p > 0.05). Nerve conduction velocities of the common peroneal, peroneal, superficial peroneal, and tibial nerves were significantly improved at 6 and 12 months compared with the preoperative period in both the SCS and PND groups (p < 0.05). However, at 6 and 12 months, there was no difference in HbA1c between the two groups (p > 0.05). Conclusion: Both SCS and DRG-S significantly improved pain, quality of life, and lower extremity nerve conduction velocity in patients with PDPN, and there was no difference between the two treatments at 12 months.

7.
Theranostics ; 14(5): 2036-2057, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38505614

RESUMO

Background: ApoA5 mainly synthesized and secreted by liver is a key modulator of lipoprotein lipase (LPL) activity and triglyceride-rich lipoproteins (TRLs). Although the role of ApoA5 in extrahepatic triglyceride (TG) metabolism in circulation has been well documented, the relationship between ApoA5 and nonalcoholic fatty liver disease (NAFLD) remains incompletely understood and the underlying molecular mechanism still needs to be elucidated. Methods: We used CRISPR/Cas9 gene editing to delete Apoa5 gene from Syrian golden hamster, a small rodent model replicating human metabolic features. Then, the ApoA5-deficient (ApoA5-/-) hamsters were used to investigate NAFLD with or without challenging a high fat diet (HFD). Results: ApoA5-/- hamsters exhibited hypertriglyceridemia (HTG) with markedly elevated TG levels at 2300 mg/dL and hepatic steatosis on a regular chow diet, accompanied with an increase in the expression levels of genes regulating lipolysis and small adipocytes in the adipose tissue. An HFD challenge predisposed ApoA5-/- hamsters to severe HTG (sHTG) and nonalcoholic steatohepatitis (NASH). Mechanistic studies in vitro and in vivo revealed that targeting ApoA5 disrupted NR1D1 mRNA stability in the HepG2 cells and the liver to reduce both mRNA and protein levels of NR1D1, respectively. Overexpression of human NR1D1 by adeno-associated virus 8 (AAV8) in the livers of ApoA5-/- hamsters significantly ameliorated fatty liver without affecting plasma lipid levels. Moreover, restoration of hepatic ApoA5 or activation of UCP1 in brown adipose tissue (BAT) by cold exposure or CL316243 administration could significantly correct sHTG and hepatic steatosis in ApoA5-/- hamsters. Conclusions: Our data demonstrate that HTG caused by ApoA5 deficiency in hamsters is sufficient to elicit hepatic steatosis and HFD aggravates NAFLD by reducing hepatic NR1D1 mRNA and protein levels, which provides a mechanistic link between ApoA5 and NAFLD and suggests the new insights into the potential therapeutic approaches for the treatment of HTG and the related disorders due to ApoA5 deficiency in the clinical trials in future.


Assuntos
Hiperlipidemias , Hepatopatia Gordurosa não Alcoólica , Animais , Cricetinae , Humanos , Camundongos , Hepatopatia Gordurosa não Alcoólica/metabolismo , Fígado/metabolismo , Triglicerídeos/metabolismo , Hiperlipidemias/metabolismo , Dieta Hiperlipídica/efeitos adversos , Mesocricetus , RNA Mensageiro/metabolismo , Camundongos Endogâmicos C57BL , Membro 1 do Grupo D da Subfamília 1 de Receptores Nucleares/metabolismo
8.
Sci Total Environ ; 918: 170697, 2024 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-38331272

RESUMO

Heterotrophic ammonia assimilation (HAA) process had been widely used in the treatment of high salt wastewater, but the electro enhanced coupling process and electron transfer process were rarely studied. In this study, a HAA process coupled microbial fuel cell (MFC) system was established to treat ammonia-containing wastewater under increasing salinity to achieve nitrogen recovery and electricity generation. Up to 95.4 % NH4+-N and 96.4 % COD removal efficiencies were achieved at 2 % salinity in HAA-MFC. The maximum power density and current density at 2 % salinity were 29.93 mW/m2 and 182.37 mA/m2, respectively. The residual organic matter in the cathode effluent was effectively removed by the anode. The increase of salinity not only enhanced the sludge settling performance and activity, but also promoted the enzyme activity and amino acid production of the ammonia assimilation pathway. Marinobacter and Halomonas were gradually enriched at the anode and cathode with increased salinity to promote ammonia assimilation and electron production. This research offered a promising solution to overcome salinity-related challenges in wastewater treatment and resource recovery.


Assuntos
Fontes de Energia Bioelétrica , Águas Residuárias , Amônia/metabolismo , Eletricidade , Reatores Biológicos , Eletrodos
9.
Water Res ; 247: 120772, 2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-37898003

RESUMO

Existing conventional biological treatment techniques face numerous limitations in effectively removing total petroleum hydrocarbons (TPHs) and ammonia (NH4+-N) from oilfield-produced water (OPW), highlighting the pressing need for innovative pre-oxidation and biological treatment processes. In this study, a pyrite-activated peroxymonosulfate (PMS)-coupled heterotrophic ammonia assimilation (HAA) system was established to achieve satisfactory system performance for OPW treatment. Pyrite sustained-release Fe2+-activated PMS was used to produce SO4•- and •OH, and 71.0 % of TPHs were effectively removed from the oil wastewater. The average TPHs and NH4+-N removal efficiencies in the test group with pre-oxidation were 96.9 and 98.3 %, compared to 46.5 and 77.1 % in the control group, respectively. The maximum fluorescence intensities of tryptophan protein and aromatic protein in the test group declined by 83.7 %. Fourier transform ion cyclotron resonance mass spectrometry revealed that pre-oxidation degraded more long-chain hydrocarbons and aromatic family compound, whereas the HAA process produced more proteins and carbohydrates. Pyrite-PMS promoted the enrichment of ammonia-assimilating bacteria, alleviating the explosive increase in extracellular polymeric substances and reducing sludge settleability. The low cost, efficiency, green chemistry principles, and synergies of this approach make it a powerful solution for practical OPW treatment to reduce environmental impacts and promote sustainable wastewater treatment.


Assuntos
Amônia , Petróleo , Campos de Petróleo e Gás , Salinidade , Água , Hidrocarbonetos
10.
Methods Enzymol ; 689: 237-261, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37802572

RESUMO

Steroid 5α-reductases (SRD5As), also known as 3-oxo-5α-steroid 4-dehydrogenases, are essential membrane-bound enzymes involved in steroid metabolism. Belonging to the NADPH-dependent oxidoreductase family, 5α-reductases catalyze steroids with 3-oxo-Δ4 structure, such as testosterone or progesterone, to produce their corresponding 3-oxo-5α steroids, which are necessary for a variety of physiological and pathological activities. Despite their significance, SRD5A structures are still in short supply to date. Here we describe a protocol for expression, purification, crystallization, structural determination, and functional analysis of PbSRD5A, the 5α-reductase from Proteobacteria bacterium sharing high sequence identity with human SRD5A1 and SRD5A2 isozymes, which we have recently structurally characterized using a lipidic cubic phase approach. Application of similar methods to other 5α-reductase isozymes will lead to breakthroughs in the understanding of the structure, function, and mechanism of oxidoreductases implicated in steroid metabolism.


Assuntos
Isoenzimas , Oxirredutases , Humanos , Oxirredutases/genética , Esteroides , Progesterona/metabolismo , Proteínas de Membrana , 3-Oxo-5-alfa-Esteroide 4-Desidrogenase/genética
11.
Nanomaterials (Basel) ; 13(19)2023 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-37836304

RESUMO

The rational fabrication of composite structures made of mixed components has shown great potential for boosting the energy density of supercapacitors. Herein, an elaborate hierarchical MOF-derived NiCo2S4@Mo-doped Co-LDH arrays hybrid electrode was fabricated through a step-wise method. By leveraging the synergistic effects of a uniform array of NiCo2S4 nanowires as the core and an MOF-derived porous shell, the NiCo2S4@Mo-doped Co-LDH hybrid electrode demonstrates an exceptional specific capacitance of 3049.3 F g-1 at 1 A g-1. Even at a higher current density of 20 A g-1, the capacitance remains high at 2458.8 F g-1. Moreover, the electrode exhibits remarkable cycling stability, with 91% of the initial capacitance maintained after 10,000 cycles at 10 A g-1. Additionally, the as-fabricated asymmetric supercapacitor (ASC) based on the NiCo2S4@Mo-doped Co-LDH electrode achieves an impressive energy density of 97.5 Wh kg-1 at a power density of 835.6 W kg-1. These findings provide a promising approach for the development of hybrid-structured electrodes, enabling the realization of high-energy-density asymmetric supercapacitors.

12.
Molecules ; 28(13)2023 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-37446685

RESUMO

Converting biowaste into carbon-based supercapacitor materials provides a new solution for high-performance and environmentally friendly energy storage applications. Herein, the hierarchical PAC/NiCo2S4 composite structure was fabricated through the combination of activation and sulfuration treatments. The PAC/NiCo2S4 electrode garnered advantages from its hierarchical structure and hollow architecture, resulting in a notable specific capacitance (1217.2 F g-1 at 1.25 A g-1) and superior cycling stability. Moreover, a novel all-solid-state asymmetric supercapacitor (ASC) was successfully constructed, utilizing PAC/NiCo2S4 as the cathode and PAC as the anode. The resultant device exhibited exceptionally high energy (49.7 Wh kg-1) and power density (4785.5 W kg-1), indicating the potential of this biomass-derived, hierarchical PAC/NiCo2S4 composite structure for employment in high-performance supercapacitors.


Assuntos
Carvão Vegetal , Lotus , Porosidade , Biomassa , Sementes
13.
Phys Chem Chem Phys ; 25(27): 18048-18055, 2023 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-37378660

RESUMO

In this study, polarization Raman spectra were collected for binary mixtures of formic acid/methanol and formic acid/acetonitrile with different volume fractions. The broad band of formic acid in the CO vibration region was divided into four vibration peaks, corresponding to CO symmetric and anti-symmetric stretching vibration from cyclic dimer, CO stretching from open dimer, and CO stretching from the free monomer. The experiments showed that as the volume fraction of formic acid in the binary mixture decreased, the cyclic dimer gradually converted to the open dimer, and at a volume fraction of 0.1, fully depolymerized into monomer form (free monomer, solvated monomer, and hydrogen bonding monomer clusters with solvent). The contribution percentage of the total CO stretching intensity of each structure at different concentrations was quantitatively calculated using high resolution infrared spectroscopy, and the results were consistent with the conclusions predicted by polarization Raman spectroscopy. Concentration-triggered 2D-COS synchronous and asynchronous spectra also confirmed the kinetics of formic acid diluted in acetonitrile. This work provides a spectroscopic method for studying the structure of organic compounds in solution and concentration-triggering kinetics in mixtures.

14.
IEEE Trans Image Process ; 32: 1774-1787, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37015134

RESUMO

Taking photos with digital cameras often accompanies saturated pixels due to their limited dynamic range, and it is far too ill-posed to restore them. Capturing multiple low dynamic range images with bracketed exposures can make the problem less ill-posed, however, it is prone to ghosting artifacts caused by spatial misalignment among images. A polarization camera can capture four spatially-aligned and temporally-synchronized polarized images with different polarizer angles in a single shot, which can be used for ghost-free high dynamic range (HDR) reconstruction. However, real-world scenarios are still challenging since existing polarization-based HDR reconstruction methods treat all pixels in the same manner and only utilize the spatially-variant exposures of the polarized images (without fully exploiting the degree of polarization (DoP) and the angle of polarization (AoP) of the incoming light to the sensor, which encode abundant structural and contextual information of the scene) to handle the problem still in an ill-posed manner. In this paper, we propose a pixel-wise depolarization strategy to solve the polarization guided HDR reconstruction problem, by classifying the pixels based on their levels of ill-posedness in HDR reconstruction procedure and applying different solutions to different classes. To utilize the strategy with better generalization ability and higher robustness, we propose a network-physics-hybrid polarization-based HDR reconstruction pipeline along with a neural network tailored to it, fully exploiting the DoP and AoP. Experimental results show that our approach achieves state-of-the-art performance on both synthetic and real-world images.

15.
Artigo em Inglês | MEDLINE | ID: mdl-36673677

RESUMO

Urban construction land (UCL) change is a significant cause of changes in urban carbon emissions. However, as the extent of this effect is currently unclear, cities cannot easily formulate reasonable carbon reduction policies in terms of land use. Taking the city of Wuhan, China, as an example, this paper combines data on land use and carbon emissions from 1995 to 2019 and uses spatial analysis, curve estimation, and correlation evaluation to explore the direct and indirect effects of the UCL changes on carbon emissions. The results show that: (1) Between 1995 and 2019, the UCL area in Wuhan increased by 193.44%, and carbon emissions increased by 78.63%; moreover, both changes showed a gradually increasing spatial correlation, and the quantitative relationship could be better fitted with a composite function model; (2) The UCL change had mainly an indirect impact on carbon emissions via factors such as population and energy use intensity per unit of carbon emissions; (3) The maximum value of carbon emissions inside a unit area decreased during the study period, with an average annual decrease of about 2.02%. Therefore, the city of Wuhan can promote the achievement of its carbon emissions reduction targets by improving the existing land use policies, for example, by dividing the city into multiple functional zones.


Assuntos
Dióxido de Carbono , Carbono , Cidades , Carbono/análise , Análise Espacial , China , Dióxido de Carbono/análise
16.
Org Biomol Chem ; 21(7): 1395-1398, 2023 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-36688572

RESUMO

Herein, we presented a simple approach for C-H oxidation in the C23 or/and C24 of ursane triterpenoids without any protection of a Δ12,13 double bond. As a result, from commercial ursolic acid (UA), six naturally occurring ursane triterpenoids were synthesized in overall yields of 3.4% to 36.8%, which implied the importance of this approach for the derivation of natural products and their application in biological activity.


Assuntos
Produtos Biológicos , Triterpenos , Triterpenos/farmacologia , Triterpenos/química , Triterpenos Pentacíclicos , Produtos Biológicos/química
17.
Spectrochim Acta A Mol Biomol Spectrosc ; 284: 121808, 2023 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-36063734

RESUMO

The isotropic and anisotropic component Raman spectra and H NMR of N-methylpyrrolidone (NMP)/carbon tetrachloride and NMP/methanol binary mixture at different volume fractions have been collected. The polarization Raman frequencies and frequency differences of CO stretching vibration for NMP/methanol mixture show unique concentration-dependence and abrupt jump feature. It is found that the H-bond between solute and solvent does not destroy the noncoincidence (NCE) phenomenon, but has a significant synergistic effect on the NCE. Two distinctive clusters constrained by H-bond and intermolecular interactions were easily determined by means of linear extension method from abrupt jump curve. The experimental phenomena can be well explained by aggregation-induced splitting theory with the proposed dimer structure and H-bond cluster model. Applying the same methodology the conformation of NMP in water has been determined successfully. The establishment of this method will play an important role in the determination of biomolecule aggregation behavior and supramolecular self-assembly structure.


Assuntos
Metanol , Análise Espectral Raman , Tetracloreto de Carbono , Pirrolidinonas , Solventes/química , Vibração , Água/química
18.
Sci Total Environ ; 848: 157806, 2022 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-35932852

RESUMO

Long-term stagnation of biosystems (with no or very little wastewater) owing to seasonal downtime or failure maintenance brings great challenges to the performance recovery after system restart. In particular, the reduction of microbial activity and change of dissolved organic matter (DOM) affect the effluent quality and subsequent treatment procedures. Monitoring the dynamics and resilience of biosystems after long-term stagnation is important to formulate targeted countermeasures for system stability. However, the influence of long-term stagnation on autotrophic nitrification (AN) and heterotrophic assimilation (HA) biosystems has not been systematically explored. Here, we used halophilic AN and HA systems to study the stability and resilience of two nitrogen removal consortia after long-term stagnation. The results showed that 97.5 % and 93 % of ammonium and 47.0 % and 90.1 % of total nitrogen were removed using the halophilic AN and HA systems, respectively, in the stable period. After four weeks of stagnation, the HA system showed stronger resilience than AN system, in terms of faster recovery of treatment performance, and less fluctuations in sludge settleability and extracellular polymeric substances. In addition, after the stagnation period, the DOM of AN system was rich in low-molecular refractory humic acid, whereas that of HA system was rich in high-molecular proteins. The stagnation period led to the replacement of the dominant heterotrophic functional microorganisms, Paracoccus and Halomonas, with Muricauda and Marinobacterium in the HA system. The microbial network results revealed that the cooperation of heterotrophic bacteria enables stronger resilience of the HA system from prolonged stagnation than the AN system. In addition, the nitrogen removal efficiency, protein to polysaccharide ratio of EPS and fluorescence intensity of DOM were significantly correlated with the microbial community composition. These results suggest that AN system has greater risks in terms of treatment performance and sludge stability than the system after long-term stagnation.


Assuntos
Compostos de Amônio , Nitrificação , Bactérias/metabolismo , Reatores Biológicos/microbiologia , Desnitrificação , Substâncias Húmicas , Nitrogênio/metabolismo , Esgotos/microbiologia , Águas Residuárias
19.
Bioresour Technol ; 350: 126911, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35231594

RESUMO

The contradiction between theoretical metabolism of ammonium assimilation and experiential understanding of conventional biosystems makes the rational optimization of the ammonium-assimilating microbiome through carbon to nitrogen (C/N) ratios perplexing. The effect of different C/N ratios on ammonium-assimilating biosystems was investigated in saline wastewater treatment. C/N ratios significantly hindered the nutrient removal efficiency, but ammonium-assimilating biosystems maintained functional stability in nitrogen conversions and microbial communities. With sufficient biomass, higher than 86% ammonium and 73% phosphorus were removed when C/N ratios were higher than 25. Ammonium assimilation dominated the nitrogen metabolism in all biosystems even under relatively low C/N ratios, evidenced by the extremely low abundances of nitrification functional genes. Different C/N ratios did not significantly change the bacterial community structure of ammonium-assimilating biosystems. It is anticipated that the ammonium-assimilating biosystem with advantages of clear metabolic pathway and easy optimization can be applied to nutrient removal and recovery in saline environments.


Assuntos
Compostos de Amônio , Microbiota , Compostos de Amônio/metabolismo , Carbono/metabolismo , Desnitrificação , Nitrificação , Nitrogênio/metabolismo
20.
Chemosphere ; 292: 133507, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-34979206

RESUMO

High salinity seriously inhibits the growth and metabolism of microorganisms, resulting in poor settleability, excessive biomass loss and low treatment efficiency of biological wastewater treatment systems. The development of halophilic aerobic granular sludge (HAGS) is a feasible strategy for addressing this challenge. However, there are problems with the granulation of HAGS and the stability of granules at decreasing temperatures. In this study, granular activated carbon (GAC) with a large specific surface area and good biocompatibility was used to enhance the robustness of HAGS. The results showed that the addition of GAC shortened the granulation time from 60 d (control system) to 35 d (GAC-addition system). The proteins contents of extracellular polymeric substances (EPS) in the GAC-addition system was significantly higher (p < 0.05) than that in the control system during granulation. Satisfactory NH4+-N and chemical oxygen demand (COD) removal efficiencies reached more than 96% in both systems at 18-26 °C. When the operating temperature was lower than 15 °C, the GAC-addition system exhibited better NH4+-N removal performance (>80%) than the control system (<60%). Moreover, the abundance of almost all nitrogen metabolism-related genes in the GAC-addition system was higher than that in the control system. During the granulation process, the enrichment of functional microorganisms, including family Flavobacteriaceae, Rhodobacteraceae, and Cryomorphaceae, may promote the production of EPS by significantly upregulating (p < 0.05) the metabolic pathway "Signaling Molecules and Interaction" in the GAC-addition system. The overexpression of the nitrogen assimilation gene glnA in heterotrophic bacteria (Halomonas and Marinobacterium) may promote the conversion of inorganic nitrogen to extracellular proteins to adapt to the decreased operational temperature. Our findings confirm that GAC addition is a simple but effective strategy to accelerate granulation and enhance the robustness of HAGS in saline wastewater treatment.


Assuntos
Carvão Vegetal , Esgotos , Aerobiose , Reatores Biológicos , Nitrogênio , Temperatura , Eliminação de Resíduos Líquidos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...