Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Plants (Basel) ; 11(22)2022 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-36432761

RESUMO

In order to elucidate the salt tolerance mechanism of Populus talassica × Populus euphratica, the growth, physiology and anatomical characteristics of P. talassica × P. euphratica were studied under different concentrations of NaCl-stress treatments. In this study, the annual seedlings of Populus talassica × Populus euphratica were used as the test material in a field potted control experiment. The basic salt content of the culture soil was the control (CK), and two NaCl treatments of 200 mmol/L and 400 mmol/L were established. The pot experiment showed that: (1) Compared with CK, the 200 mmol/L NaCl-stress treatment significantly increased the growth parameters of P. talassica × P. euphratica, such as leaf area, plant height, ground diameter, biomass, root length, root surface area, root fork number and root-shoot ratio. However, compared with CK, the 400 mmol/L NaCl-stress treatment significantly reduced most growth parameters. (2) The 200 and 400 mmol/L NaCl-stress treatments significantly decreased various physiological parameters such as relative water content (RWC), chlorophyll content, water potential, stomatal opening and photosynthetic parameters and increased the accumulation of MDA and Pro compared with CK. The 200 mmol/L NaCl-stress treatment significantly increased the activity of antioxidant enzymes, and the 400 mmol/L NaCl-stress treatment significantly decreased the activity of antioxidant enzymes. (3) Compared with CK, 200 and 400 mmol/L NaCl-stress treatments significantly improved the leaf palisade tissue thickness and palisade-to-sea ratio, as well as the stem xylem and stem phloem thickness and pith diameter, and significantly increased the root xylem thickness, root phloem thickness, and root cross-cutting diameter of P. talassica × P. euphratica. The growth, physiological characteristics and anatomical characteristics of P. talassica × P. euphratica under NaCl-stress treatments showed that it had good salt tolerance and adaptability, and the 200 mmol/L NaCl-stress treatment promoted the growth of P. talassica × P. euphratica to a certain extent. This study provided a theoretical basis for the study of the salt-tolerant mechanism of P. talassica × P. euphratica.

2.
Onco Targets Ther ; 14: 1401-1416, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33658803

RESUMO

INTRODUCTION: Musalais is a traditional fermented wine produced in southern Xinjiang (a province of China) and is protected as a form of national intangible cultural heritage. However, ethyl carbamate (EC), which is naturally produced during the fermentation process, has been shown to induce carcinogenesis and was classified as a group 2A carcinogen by The World Health Organization's International Agency for Research on Cancer. METHODS: In this work, rats were treated with musalais containing EC at varying contents (0.1, 1, or 10 mg/kg). To evaluate the toxicity of EC in musalais, the liver and kidney of the rats were subjected to transcriptomics sequencing. Differentially expressed genes (DEGs) between treated and untreated rats were identified, and Gene Ontology and Kyoto Encyclopedia of Genes and Genomes enrichment analysis were performed on these genes to investigate the biological functions affected by EC in musalais. RESULTS: The results demonstrated that high EC content in musalais is possibly involved in the regulation of cytochrome P450 metabolism, chemical carcinogenesis, metabolism of xenobiotics by cytochrome P450, Wnt signaling, and p53 signaling by targeting Mgst1, Gstp1, Gsta5, Gsta1, Adh1, Gsta2, and Ccnd1, thereby inducing cancer. CONCLUSION: The present work predicted the potential carcinogenic mechanism of high EC content in musalais, providing a reference for its safety evaluation.

3.
Sci Rep ; 10(1): 15148, 2020 09 16.
Artigo em Inglês | MEDLINE | ID: mdl-32939003

RESUMO

Suaeda rigida is a lignified, true haplotype that predominantly grows in the Tarim basin, China. It has significant economic and ecological value. Herein, with aim to determine the genes associated with salt tolerance, transcriptome sequencing was performed on its stem, leaves and root over three set NaCl gradients regimens at treatment intervals of 3 h and 5 days. From our findings, we identified 829,095 unigenes, with 331,394 being successfully matched to at least one annotation database. In roots, under 3 h treatment, no up-regulated DEGs were identified in 100 and 500 mM NaCl treated samples. Under 5 days treatment, 97, 60 and 242 up-regulated DEGs were identified in 100, 300, 500 mM NaCl treated samples, respectively. We identified 50, 22 and 255 down-regulated DEGs in 100, 300, 500 mM NaCl treated samples, respectively. GO biological process enrichment analysis established that down-regulated DEGs were associated with nitrogen compound transport, organic substance transport and intracellular protein transport while the up-regulated genes were enriched in cell wall biogenesis, such as plant-type cell wall biogenesis, cell wall assembly, extracellular matrix organization and plant-type cell wall organization. These findings provide valuable knowledge on genes associated with salt tolerance of Suaeda rigida, and can be applied in other downstream haplotype studies.


Assuntos
Estresse Salino/genética , Plantas Tolerantes a Sal/genética , Chenopodiaceae , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Raízes de Plantas/genética , Raízes de Plantas/metabolismo , RNA-Seq , Salinidade , Plantas Tolerantes a Sal/metabolismo , Cloreto de Sódio/metabolismo
4.
Anal Bioanal Chem ; 412(27): 7627-7637, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32897411

RESUMO

The aim of this work is to investigate the effect of the ethyl carbamate (EC) content in musalais on the metabolism of rats. Electron beam irradiation was performed to decrease the content of EC in musalais, and Sprague Dawley rats were subjected to intragastric administration of musalais with varying EC content (high, medium, and low groups). Control rats were fed normally without any treatment. Serum and urine samples were analyzed using ultra-high-performance liquid chromatography quadrupole time-of-flight mass spectrometry. Principal component analysis and orthogonal projections to latent structures discriminant analysis (OPLS-DA) were performed to detect changes in the metabolite profile in the serum and urine in order to identify the differential metabolites and metabolic pathways. The results demonstrated clear differences in the serum and urine metabolic patterns between control and treatment groups. Ions in treatment groups with variable importance in the projection of >1 (selected from the OPLS-DA loading plots) and Ps < 0.05 (Student t test) compared to control group were identified as candidate metabolites. Analysis of the metabolic pathways relevant to the identified differential metabolites revealed that high EC content in musalais (10 mg/kg) mainly affected rats through valine, leucine, and isoleucine biosynthesis and nicotinate and nicotinamide metabolism, which were associated with energy metabolism. In addition, this work suggests that EC can induce oxidative stress via inhibition of glycine content.


Assuntos
Metaboloma , Uretana/análise , Vinho/análise , Animais , China , Cromatografia Líquida de Alta Pressão/métodos , Espectrometria de Massas/métodos , Redes e Vias Metabólicas , Metabolômica/métodos , Ratos , Ratos Sprague-Dawley , Soro/química , Soro/metabolismo , Uretana/administração & dosagem , Uretana/metabolismo , Urina/química
5.
Oncol Lett ; 17(3): 2777-2787, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30854052

RESUMO

MicroRNAs (miRNAs) are small non-coding RNAs of 18-25 nucleotides that modulate gene expression at the post-transcriptional level. Grape seed proanthocyanidins (GSPs), which are biologically active components in grape seeds, have been demonstrated to exhibit anticancer effects. The current study investigated whether GSPs can regulate miRNA expression and the possible anticancer molecular mechanisms of GSPs. Pancreatic cancer (PC) cell samples, SS3, SS12 and SS24, were treated with 20 µg/ml GSPs for 3, 12 and 24 h, respectively. Control samples, SC3, SC12 and SC24, were also prepared. Using miRNA-seq, transcriptome analysis identified 24, 83 and 83 differentially expressed (DE) miRNAs in SS3 vs. SC3, SS12 vs. SC12 and SS24 vs. SC24, respectively. This indicated that treatment with GSPs could modulate the expression of miRNAs. Subsequently, 74, 598 and 1,204 target genes for the three sets of DE miRNAs were predicted. Gene Ontology and Kyoto Encyclopedia of Genes and Genomes analysis revealed that multiple target genes were associated with the proliferation and apoptosis of PC cells. In addition, a network was constructed of the DE miRNAs and the target genes associated with PC. The associations identified suggested that treatment with GSPs may inhibit the proliferation of PC cells through the modulation of miRNA expression.

6.
Oncol Lett ; 17(2): 1741-1749, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30675233

RESUMO

Grape seed proanthocyanidins (GSPs) have been demonstrated to exhibit potential chemotherapeutic efficacy against various cancer types. To determine the underlying molecular mechanisms involved in GSP-induced apoptosis, the present study prepared pancreatic cancer (PC) cells samples, S3, S12 and S24, which were treated with 20 µg/ml GSPs for 3, 12 and 24 h, respectively. Control cell samples, C3, C12 and C24, were also prepared. Using RNA-sequencing, transcriptome comparisons were performed, which identified 966, 3,543 and 4,944 differentially-expressed genes (DEGs) in S3 vs. C3, S12 vs. C12 and S24 vs. C24, respectively. Gene Ontology analysis of the DEGs, revealed that treatment with GSPs is associated with disruption of the cell cycle (CC) in PC cells. Additionally, disruption of transcription, DNA replication and DNA repair were associated with GSP-treatment in PC cells. Network analysis demonstrated that the common DEGs involved in the CC, transcription, DNA replication and DNA repair were integrated, and served essential roles in the control of CC progression in cancer cells. In summary, GSPs may exhibit a potential chemotherapeutic effect on PC cell proliferation.

7.
Ying Yong Sheng Tai Xue Bao ; 27(2): 403-11, 2016 Feb.
Artigo em Chinês | MEDLINE | ID: mdl-27396111

RESUMO

Spatial distribution pattern of Populus euphratica and P. pruinosa clonal ramets at three sites was studied, including natural mixed forest of P. euphratica and P. pruinosa in Awati County located in the downstream of Yarkant River, natural P. pruinosa forest in Group 16 of Nongyishi in the Tarim River upstream area, and natural P. euphratica forest in Luntai County located in the middle reach of the Tarim River. The clonal ramets of the three sites showed a cluster distribution pattern at eight sampling scales, i.e., 5 mx5 m, 5 mx10 m, 5 mx15 m, 10 mx10 m, 10 mx15 m, 15 mx15 m, 15 mx20 m, and 20 mX20 m. This pattern revealed that the cluster distribution was a basic property in the spatial distribution pattern of P. euphratica and P. pruinosa populations. At 5 mx5 m scale, negative binomial parameter was minimum, while Cassie index, patchiness inex and aggregation strength were maximum for the two ramet populations at the three sites.


Assuntos
Florestas , Populus/crescimento & desenvolvimento , China , Análise Espacial
8.
Ying Yong Sheng Tai Xue Bao ; 20(11): 2671-7, 2009 Nov.
Artigo em Chinês | MEDLINE | ID: mdl-20135999

RESUMO

With the high-yielding winter wheat cultivar Jimai 22 as test material, a field experiment was conducted in Yanzhou of Shandong to examine the effects of regulated deficit irrigation on the water consumption and water use efficiency (WUE) of the cultivar. Five treatments were installed, i.e., the soil relative moisture content at sowing, jointing, and anthesis stages being 80%, 65% and 65% (W0), 80%, 70% and 70% (W1), 80%, 80% and 80% (W2), 90%, 80% and 80% (W3), and 90%, 85% and 85% (W4), respectively. Under the condition of 228 mm precipitation in growth season, the total water consumption was higher in treatments W1 and W4 than in treatments W0, W2, and W3, and no difference was observed between treatments W1 and W4. Comparing with W4, treatment W1 decreased the water storage in 0-200 cm soil layer and the water consumption by wheat from jointing to anthesis stages, but increased the water consumption from anthesis to maturity stages. The water consumption rates at the stages from jointing to anthesis and from anthesis to maturity in treatment W4 were higher. Under regulated deficit irrigation, treatment W0 had higher WUE, but the grain yield was the lowest. The WUE in other treatments increased first, and then decreased with increasing irrigation amount. Both the water consumption and the grain yield were the highest in treatments W1 and W4, and treatment W1 had higher irrigation water use efficiency and irrigation benefit than treatment W4, being the best irrigation regime of high-yielding and water-saving in our study.


Assuntos
Irrigação Agrícola , Agricultura/métodos , Solo/análise , Triticum/crescimento & desenvolvimento , Água/metabolismo , Biomassa , China , Estações do Ano , Triticum/metabolismo , Água/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...