Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Pharmacol ; 13: 971890, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36160434

RESUMO

Since December 2019, COVID-19 has spread across the world almost through 2.5 years. As of 16 June 2022, the cumulative number of confirmed cases of COVID-19 worldwide has reached 542.62 million, and the death toll has risen to 6.33 million. With the increasing number of deaths, it is urgent to find effective treatment drugs. Remdesivir, an investigational broad-spectrum antiviral drug produced by Gilead has been shown to inhibit SARS-CoV-2, in vitro and in vivo. This review is aimed to analyze the feasibility of remdesivir in COVID-19 and put forward the shortcomings of present clinical studies. We systematically searched PubMed and Web of Science up until 24 May 2022, using several specific terms such as "remdesivir" or "GS-5734" and "COVID-19" or "SARS-CoV-2" and retrieved basic researches and clinical studies of remdesivir in COVID-19. In this review, we summarized and reviewed the mechanism of remdesivir in SARS-COV-2, clinical trials of using remdesivir in COVID-19, analyzed the efficacy and safety of remdesivir, and judged whether the drug was effective for the treatment of COVID-19. In different clinical trials, remdesivir showed a mixed result in the treatment of COVID-19. It seemed that remdesivir shortened the time to recovery and had an acceptable safety profile. However, more clinical trials are needed to test the efficacy and safety of remdesivir.

2.
Nanomaterials (Basel) ; 10(10)2020 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-33081009

RESUMO

This study investigated the electrochemical actuation behavior of nanoporous material during the capacitive process. The length change of nanoporous gold (npg) was in situ investigated in a liquid environment using the dilatometry technique. The mechanical effect of MnO2 layers was introduced in this work to improve the actuation characteristics of the npg samples. Our work found that the actuation behavior of npg sample could be significantly modulated with a covering of MnO2 layers. The electrochemical actuation amplitude was efficiently improved and strongly dependent on the thickness of MnO2 layers covered. Aside from the amplitude, the phase relation between the length change and the electrode potential was inverted when covering the MnO2 layer on the npg samples. This means the expansion of the npg samples and the contraction of samples covered with the MnO2 layer when electrochemical potential sweeps positively. A simple finite element model was built up to understand the effect of the MnO2 layer. The agreement between the simulation result and the experimental data indicates that the sign-inverted actuation-potential response of nanoporous gold contributes to the mechanical effect of MnO2. It is believed that our work could offer a deep understanding on the effect of the MnO2 layer on the electrochemical actuation and then provide a useful strategy to modulate the actuation performance of nanoporous metal materials.

3.
Plant Methods ; 15: 142, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31788019

RESUMO

BACKGROUND: Large insert paired-end sequencing technologies are important tools for assembling genomes, delineating associated breakpoints and detecting structural rearrangements. To facilitate the comprehensive detection of inter- and intra-chromosomal structural rearrangements or variants (SVs) and complex genome assembly with long repeats and segmental duplications, we developed a new method based on single-molecule real-time synthesis sequencing technology for generating long paired-end sequences of large insert DNA libraries. RESULTS: A Fosmid vector, pHZAUFOS3, was developed with the following new features: (1) two 18-bp non-palindromic I-SceI sites flank the cloning site, and another two sites are present in the skeleton of the vector, allowing long DNA inserts (and the long paired-ends in this paper) to be recovered as single fragments and the vector (~ 8 kb) to be fragmented into 2-3 kb fragments by I-SceI digestion and therefore was effectively removed from the long paired-ends (5-10 kb); (2) the chloramphenicol (Cm) resistance gene and replicon (oriV), necessary for colony growth, are located near the two sides of the cloning site, helping to increase the proportion of the paired-end fragments to single-end fragments in the paired-end libraries. Paired-end libraries were constructed by ligating the size-selected, mechanically sheared pooled Fosmid DNA fragments to the Ampicillin (Amp) resistance gene fragment and screening the colonies with Cm and Amp. We tested this method on yeast and Setaria italica Yugu1. Fosmid-size paired-ends with an average length longer than 2 kb for each end were generated. The N50 scaffold lengths of the de novo assemblies of the yeast and S. italica Yugu1 genomes were significantly improved. Five large and five small structural rearrangements or assembly errors spanning tens of bp to tens of kb were identified in S. italica Yugu1 including deletions, inversions, duplications and translocations. CONCLUSIONS: We developed a new method for long paired-end sequencing of large insert libraries, which can efficiently improve the quality of de novo genome assembly and identify large and small structural rearrangements or assembly errors.

4.
Nanomaterials (Basel) ; 9(8)2019 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-31416200

RESUMO

Electrochemical oxygen reduction and oxygen evolution are two key processes that limit the efficiency of important energy conversion devices such as metal-air battery and electrolysis. Perovskite oxides are receiving discernable attention as potential bifunctional oxygen electrocatalysts to replace precious metals because of their low cost, good activity, and versatility. In this review, we provide a brief summary on the fundamentals of perovskite oxygen electrocatalysts and a detailed discussion on emerging high-performance oxygen electrocatalysts based on perovskite, which include perovskite with a controlled composition, perovskite with high surface area, and perovskite composites. Challenges and outlooks in the further development of perovskite oxygen electrocatalysts are also presented.

5.
Nanomaterials (Basel) ; 9(5)2019 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-31060223

RESUMO

This work investigates the effect of a magnetic field on the electrochemical performance of nanoporous nickel (np-Ni). We first compare the electrochemical capacitance of np-Ni electrodes, which were prepared using the chemical dealloying strategy under different magnetic flux densities (B = 0, 500 mT). Our experimental data show that np-Ni500 prepared under an external magnetic field of 500 mT exhibits a much better electrochemical performance, in comparison with that (np-Ni0) prepared without applying a magnetic field. Furthermore, the specific capacitance of the np-Ni0 electrode could be further enhanced when we increase the magnetic flux densities from 0 T to 500 mT, whereas the np-Ni500 electrode exhibits a stable electrochemical performance under different magnetic flux densities (B = 0 mT, 300 mT, 500 mT). This could be attributed to the change in the electrochemical impedance of the np-Ni0 electrode induced by an external magnetic field. Our work thus offers an alternative method to enhance the electrochemical energy storage of materials.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...