Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Environ Sci Pollut Res Int ; 29(52): 79579-79593, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-35715673

RESUMO

Rhizosphere microorganisms can greatly affect plant growth, especially the plant growth-promoting rhizobacteria (PGPR), which can improve plant root development and growth because they contain various biological functions including nitrogen fixation, phosphate solubilization, and phytosiderophore production. This study demonstrates that Cyperus rotundus L. is capable of developing and forming complex underground reproductive systems at arbitrary burial depths and cutting modes due to its extremely strong multiplication and regeneration ability. With the densities of C. rotundus increasing, the abundance of PGPR, soil enzymes invertase and urease, the nutrient contents of the field soil, and maize quality were impacted. Notably, more abundance of PGPR-most notably, the nitrogen-fixing microorganisms (NFMs) such as Azospirillum, Burkholderia, Mycobacterium, and Rhizobium-enriches in the rhizosphere of C. rotundus than in that of maize. In addition, the activities of soil enzymes invertase (S_SC) and urease (S_SU) were significantly higher in its rhizosphere than in maize, further proving that more NFMs enrich the C. rotundus rhizosphere. The nutrient contents of the field soil of TN, SOM, and SOC were reduced, indicating that the presence of C. rotundus made the soil infertile. Hence, these pieces of evidence indicate that C. rotundus may drive the field soil infertile as reflected by reduced soil nutrients via altering rhizosphere bacteria community structure.


Assuntos
Cyperus , Rizosfera , Solo/química , Zea mays , Microbiologia do Solo , Urease , beta-Frutofuranosidase , Bactérias , Nitrogênio/análise , Fosfatos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...