Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Assunto principal
Intervalo de ano de publicação
1.
Med Image Anal ; 96: 103214, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38815358

RESUMO

Multi-modal ophthalmic image classification plays a key role in diagnosing eye diseases, as it integrates information from different sources to complement their respective performances. However, recent improvements have mainly focused on accuracy, often neglecting the importance of confidence and robustness in predictions for diverse modalities. In this study, we propose a novel multi-modality evidential fusion pipeline for eye disease screening. It provides a measure of confidence for each modality and elegantly integrates the multi-modality information using a multi-distribution fusion perspective. Specifically, our method first utilizes normal inverse gamma prior distributions over pre-trained models to learn both aleatoric and epistemic uncertainty for uni-modality. Then, the normal inverse gamma distribution is analyzed as the Student's t distribution. Furthermore, within a confidence-aware fusion framework, we propose a mixture of Student's t distributions to effectively integrate different modalities, imparting the model with heavy-tailed properties and enhancing its robustness and reliability. More importantly, the confidence-aware multi-modality ranking regularization term induces the model to more reasonably rank the noisy single-modal and fused-modal confidence, leading to improved reliability and accuracy. Experimental results on both public and internal datasets demonstrate that our model excels in robustness, particularly in challenging scenarios involving Gaussian noise and modality missing conditions. Moreover, our model exhibits strong generalization capabilities to out-of-distribution data, underscoring its potential as a promising solution for multimodal eye disease screening.


Assuntos
Oftalmopatias , Humanos , Oftalmopatias/diagnóstico por imagem , Imagem Multimodal , Reprodutibilidade dos Testes , Interpretação de Imagem Assistida por Computador/métodos , Algoritmos , Aprendizado de Máquina
2.
Artigo em Inglês | MEDLINE | ID: mdl-38691432

RESUMO

Learning with noisy labels (LNL) has attracted significant attention from the research community. Many recent LNL methods rely on the assumption that clean samples tend to have a "small loss." However, this assumption often fails to generalize to some real-world cases with imbalanced subpopulations, that is, training subpopulations that vary in sample size or recognition difficulty. Therefore, recent LNL methods face the risk of misclassifying those "informative" samples (e.g., hard samples or samples in the tail subpopulations) into noisy samples, leading to poor generalization performance. To address this issue, we propose a novel LNL method to deal with noisy labels and imbalanced subpopulations simultaneously. It first leverages sample correlation to estimate samples' clean probabilities for label correction and then utilizes corrected labels for distributionally robust optimization (DRO) to further improve the robustness. Specifically, in contrast to previous works using classification loss as the selection criterion, we introduce a feature-based metric that takes the sample correlation into account for estimating samples' clean probabilities. Then, we refurbish the noisy labels using the estimated clean probabilities and the pseudo-labels from the model's predictions. With refurbished labels, we use DRO to train the model to be robust to subpopulation imbalance. Extensive experiments on a wide range of benchmarks demonstrate that our technique can consistently improve state-of-the-art (SOTA) robust learning paradigms against noisy labels, especially when encountering imbalanced subpopulations. We provide our code in https://github.com/chenmc1996/LNL-IS.

3.
IEEE Trans Pattern Anal Mach Intell ; 45(2): 2551-2566, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35503823

RESUMO

Existing multi-view classification algorithms focus on promoting accuracy by exploiting different views, typically integrating them into common representations for follow-up tasks. Although effective, it is also crucial to ensure the reliability of both the multi-view integration and the final decision, especially for noisy, corrupted and out-of-distribution data. Dynamically assessing the trustworthiness of each view for different samples could provide reliable integration. This can be achieved through uncertainty estimation. With this in mind, we propose a novel multi-view classification algorithm, termed trusted multi-view classification (TMC), providing a new paradigm for multi-view learning by dynamically integrating different views at an evidence level. The proposed TMC can promote classification reliability by considering evidence from each view. Specifically, we introduce the variational Dirichlet to characterize the distribution of the class probabilities, parameterized with evidence from different views and integrated with the Dempster-Shafer theory. The unified learning framework induces accurate uncertainty and accordingly endows the model with both reliability and robustness against possible noise or corruption. Both theoretical and experimental results validate the effectiveness of the proposed model in accuracy, robustness and trustworthiness.

4.
Artigo em Inglês | MEDLINE | ID: mdl-35839199

RESUMO

Modeling complex correlations on multiview data is still challenging, especially for high-dimensional features with possible noise. To address this issue, we propose a novel unsupervised multiview representation learning (UMRL) algorithm, termed autoencoder in autoencoder networks (AE 2 -Nets). The proposed framework effectively encodes information from high-dimensional heterogeneous data into a compact and informative representation with the proposed bidirectional encoding strategy. Specifically, the proposed AE 2 -Nets conduct encoding in two directions: the inner-AE-networks extract view-specific intrinsic information (forward encoding), while the outer-AE-networks integrate this view-specific intrinsic information from different views into a latent representation (backward encoding). For the nested architecture, we further provide a probabilistic explanation and extension from hierarchical variational autoencoder. The forward-backward strategy flexibly addresses high-dimensional (noisy) features within each view and encodes complementarity across multiple views in a unified framework. Extensive results on benchmark datasets validate the advantages compared to the state-of-the-art algorithms.

5.
IEEE Trans Pattern Anal Mach Intell ; 44(5): 2402-2415, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-33180720

RESUMO

Although multi-view learning has made significant progress over the past few decades, it is still challenging due to the difficulty in modeling complex correlations among different views, especially under the context of view missing. To address the challenge, we propose a novel framework termed Cross Partial Multi-View Networks (CPM-Nets), which aims to fully and flexibly take advantage of multiple partial views. We first provide a formal definition of completeness and versatility for multi-view representation and then theoretically prove the versatility of the learned latent representations. For completeness, the task of learning latent multi-view representation is specifically translated to a degradation process by mimicking data transmission, such that the optimal tradeoff between consistency and complementarity across different views can be implicitly achieved. Equipped with adversarial strategy, our model stably imputes missing views, encoding information from all views for each sample to be encoded into latent representation to further enhance the completeness. Furthermore, a nonparametric classification loss is introduced to produce structured representations and prevent overfitting, which endows the algorithm with promising generalization under view-missing cases. Extensive experimental results validate the effectiveness of our algorithm over existing state of the arts for classification, representation learning and data imputation.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...