Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Nano Lett ; 23(13): 5919-5926, 2023 07 12.
Artigo em Inglês | MEDLINE | ID: mdl-37390368

RESUMO

Exerting forces on biomolecules inside living cells would allow us to probe their dynamic interactions in their native environment. Magnetic iron oxide nanoparticles represent a unique tool capable of pulling on biomolecules with the application of an external magnetic field gradient; however, their use has been restricted to biomolecules accessible from the extracellular medium. Targeting intracellular biomolecules represents an additional challenge due to potential nonspecific interactions with cytoplasmic or nuclear components. We present the synthesis of sulfobetaine-phosphonate block copolymer ligands, which provide magnetic nanoparticles that are stealthy and targetable in living cells. We demonstrate, for the first time, their efficient targeting in the nucleus and their use for magnetic micromanipulation of a specific genomic locus in living cells. We believe that these stable and sensitive magnetic nanoprobes represent a promising tool to manipulate specific biomolecules in living cells and probe the mechanical properties of living matter at the molecular scale.


Assuntos
Nanopartículas , Polímeros , Micromanipulação , Genômica , Nanopartículas Magnéticas de Óxido de Ferro , Fenômenos Magnéticos
2.
Sci Rep ; 11(1): 15234, 2021 07 27.
Artigo em Inglês | MEDLINE | ID: mdl-34315931

RESUMO

Sandy texture soil, a major problem for agriculture requires structure and capacity improvements. However, utilization of soil conditioner may arrest this problem. This research was carried out to investigate the accumulated levels of metal ions and radionuclides in water, soil and plants following phosphogypsum organic (PG organic) added to a sandy soil for 23-month in 3 cropping seasons. The condition in the field was simulated in the laboratory using an open leaching column for 30-day under constant but different pH of leachant. More ions were released at pH < 4.6 and decreases greatly at pH > 5.6. The metal ions measured in the surface and borehole water, and soils were below the target values for respective standard raw drinking water. The metal ions did not accumulate in soil, plant and grain, and water as indicated by biological accumulation coefficients, contamination factors, I-geo index and pollution load index in a sandy soil that received the PG organic. Naturally occurring radionuclide concentrations, such as 226Ra, 228Ra, and 40K, in soil and plant tissue were found to be lower than the average value reported by several earlier studies. Under field condition the pH of water (i.e., rainfall) was greater than pH 5.6, thus renders PG organic became less soluble. There was no leaching of natural occurring radionuclides to the groundwater. Therefore, the application of PG organic to the studied soil had no impact on the soil, plants, and water and suitable as a soil conditioner in sandy texture soils.

3.
Front Mol Biosci ; 8: 682559, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34055893

RESUMO

Because of its ability to generate biological hypotheses, metabolomics offers an innovative and promising approach in many fields, including clinical research. However, collecting specimens in this setting can be difficult to standardize, especially when groups of patients with different degrees of disease severity are considered. In addition, despite major technological advances, it remains challenging to measure all the compounds defining the metabolic network of a biological system. In this context, the characterization of samples based on several analytical setups is now recognized as an efficient strategy to improve the coverage of metabolic complexity. For this purpose, chemometrics proposes efficient methods to reduce the dimensionality of these complex datasets spread over several matrices, allowing the integration of different sources or structures of metabolic information. Bioinformatics databases and query tools designed to describe and explore metabolic network models offer extremely useful solutions for the contextualization of potential biomarker subsets, enabling mechanistic hypotheses to be considered rather than simple associations. In this study, network principal component analysis was used to investigate samples collected from three cohorts of patients including multiple stages of chronic kidney disease. Metabolic profiles were measured using a combination of four analytical setups involving different separation modes in liquid chromatography coupled to high resolution mass spectrometry. Based on the chemometric model, specific patterns of metabolites, such as N-acetyl amino acids, could be associated with the different subgroups of patients. Further investigation of the metabolic signatures carried out using genome-scale network modeling confirmed both tryptophan metabolism and nucleotide interconversion as relevant pathways potentially associated with disease severity. Metabolic modules composed of chemically adjacent or close compounds of biological relevance were further investigated using carbon transfer reaction paths. Overall, the proposed integrative data analysis strategy allowed deeper insights into the metabolic routes associated with different groups of patients to be gained. Because of their complementary role in the knowledge discovery process, the association of chemometrics and bioinformatics in a common workflow is therefore shown as an efficient methodology to gain meaningful insights in a clinical context.

4.
Bioinformatics ; 37(9): 1297-1303, 2021 06 09.
Artigo em Inglês | MEDLINE | ID: mdl-33165510

RESUMO

MOTIVATION: Complex data structures composed of different groups of observations and blocks of variables are increasingly collected in many domains, including metabolomics. Analysing these high-dimensional data constitutes a challenge, and the objective of this article is to present an original multivariate method capable of explicitly taking into account links between data tables when they involve the same observations and/or variables. For that purpose, an extension of standard principal component analysis called NetPCA was developed. RESULTS: The proposed algorithm was illustrated as an efficient solution for addressing complex multigroup and multiblock datasets. A case study involving the analysis of metabolomic data with different annotation levels and originating from a chronic kidney disease (CKD) study was used to highlight the different aspects and the additional outputs of the method compared to standard PCA. On the one hand, the model parameters allowed an efficient evaluation of each group's influence to be performed. On the other hand, the relative relevance of each block of variables to the model provided decisive information for an objective interpretation of the different metabolic annotation levels. AVAILABILITY AND IMPLEMENTATION: NetPCA is available as a Python package with NumPy dependencies. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Assuntos
Algoritmos , Metabolômica , Análise de Componente Principal , Projetos de Pesquisa , Software
5.
Funct Plant Biol ; 47(6): 508-523, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32349860

RESUMO

Chromatin modulation plays important roles in gene expression regulation and genome activities. In plants, epigenetic changes, including variations in histone modification and DNA methylation, are linked to alterations in gene expression. Despite the significance and potential of in vitro cell and tissue culture systems in fundamental research and marketable applications, these systems threaten the genetic and epigenetic networks of intact plant organs and tissues. Cell and tissue culture applications can lead to DNA variations, methylation alterations, transposon activation, and finally, somaclonal variations. In this review, we discuss the status of the current understanding of epigenomic changes that occur under in vitro conditions in plantation crops, including coconut, oil palm, rubber, cotton, coffee and tea. It is hoped that comprehensive knowledge of the molecular basis of these epigenomic variations will help researchers develop strategies to enhance the totipotent and embryogenic capabilities of tissue culture systems for plantation crops.


Assuntos
Epigênese Genética , Epigenômica , Cromatina , Produtos Agrícolas/genética , Metilação de DNA
6.
Biomed Res Int ; 2020: 3063710, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32420335

RESUMO

Basal stem rot (BSR) caused by Ganoderma boninense is a major threat to sustainable oil palm production especially in Southeast Asia and has brought economic losses to the oil palm industry around the world. With no definitive cure at present, this study introduces a new fertilizer technology called GanoCare®, as an effort to suppress BSR incidence in oil palm. Experiments were carried out to evaluate the effect of GanoCare® on growth, physiology, and BSR disease suppression using sitting technique in the oil palm nursery stage. A follow-up using similar treatments was carried out in the field to test on severity of Ganoderma using baiting technique under natural condition. Treatments tested were 10 g/month and 30 g/three months given as pretreatment only or continuous treatment. Results showed that GanoCare® increased the height, bulb diameter, leaf area, chlorophyll content, photosynthesis rate, and fresh and dry weight of the leaf, bole, and root of oil palm seedlings in the nursery trial. Seedlings treated with GanoCare® exhibited reduced percentage of disease severity, incidence, and dead seedlings, compared to the control. In nursery and field, lowest percentage of dead seedlings due to Ganoderma was found in seedlings given combination of pretreatment and continuous treatment of 30 g/three months (T4) with 5.56 and 6.67%, while control seedlings significantly marked the maximum percentage of 94.45 and 93.33%. The most successful treatment in both nursery and field was T4 with disease reductions of 77.78 and 82.36%, respectively, proving that nutrients contained in GanoCare® are essential in allowing better development of a strong defense system in the seedlings.


Assuntos
Arecaceae , Resistência à Doença/efeitos dos fármacos , Fertilizantes , Ganoderma/crescimento & desenvolvimento , Doenças das Plantas/microbiologia , Caules de Planta , Arecaceae/crescimento & desenvolvimento , Arecaceae/microbiologia , Caules de Planta/crescimento & desenvolvimento , Caules de Planta/microbiologia , Plântula/crescimento & desenvolvimento , Plântula/microbiologia
7.
Talanta ; 209: 120543, 2020 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-31892025

RESUMO

The purpose of this study was to perform a discrimination and classification of diesel samples from the four major suppliers of petroleum products in Morocco using Fourier Transform Infrared Spectroscopy (FTIR), Gas Chromatography coupled with Mass Spectrometry (GC-MS) and chemometrics tools. Eighty diesel samples were collected from different gas stations owned by the four biggest brands in the Moroccan market. Principal Component Analysis (PCA) was performed to depict the similarities between the samples and check the presence of outliers. Partial Least Squares Discriminant Analysis (PLS-DA) models were set up for the discrimination and the classification of the four groups of samples (i.e., diesel suppliers). The models proposed in this study, were characterized by good prediction abilities, especially the FTIR-PLSDA model that was characterized by 100% of accurate discrimination of the four groups. The approach of analysis showed that the FTIR spectra can provide a cheap and rapid means for the determination of the diesel origin and to ensure the traceability of diesel products marketed in Morocco with respect for the rules of the green chemistry.

8.
ACS Macro Lett ; 9(6): 843-848, 2020 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-35648516

RESUMO

We took advantage of pseudopartial wetting to promote the spreading of precursor films whose surface density smoothly decays to zero away from a sessile droplet. By following the spreading dynamics of semidilute precursor films of polybutadiene melts on silicon wafers, we measure molecular diffusion coefficients for different molar masses and temperatures. For homopolymers, chains follow a thermally activated 2D Rouse diffusion mechanism, with an activation energy revealing polymer segment interactions with the surface. This Rouse model is generalized to chains with specific terminal groups.

9.
J Chromatogr A ; 1616: 460786, 2020 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-31882122

RESUMO

The liquid crystal state is an ordered physical state between a solid and a liquid. Previous research, in gas chromatography, proved that it provides a geometric selectivity, which allows the separation of geometric position isomers and cis-trans isomers that are difficult to separate on conventional gas chromatography stationary phases (polydimethyl siloxane derived and polyethylene glycol stationary phases). However, their use was generally very limited by the rather high temperature at which they must be operated, normally above the solid-liquid crystal transition temperature. In the present study we are interested in a new synthesized material, 1,4- bis (4-bromohexyloxy benzoate) phenyl (BHOBP). The first characterizations of BHOBP were carried out by thermogravimetric analysis, hot-stage optical microscopy and differential scanning calorimetry to control the thermal stability of the BHOBP as well as the nematic texture of the mesophase highlighted in a well-defined temperature range (120 °C-200 °C). When heated, the solid compound led to a stable liquid crystal state. Its cooling has revealed "a new metastable physical state, which is the supercooled liquid crystal phase". After these first characterizations, the new material was used as a stationary phase for gas chromatography. The BHOBP was deposited in a capillary column by the dynamic method. The inverse gas chromatography study of the column revealed a solid-stable nematic phase transition temperature, in agreement with the first characterization methods. The stable liquid crystal phase showed good resolutions in the analysis of some geometric isomers of low volatility as PAHs. The presence of the supercooled liquid crystal state in the chromatographic column has also been confirmed. This new metastable state is particularly interesting because it enlarged the scope of this material by improving the resolution of several mixtures. Thus, the separation of highly volatile mixtures of geometric isomers (e.g. cis and trans-decalin) was achieved only through this metastable mesophase confirming its unique selectivity. The metastable liquid crystal, used at 80 °C, has also exhibited an original behavior by its stability after several weeks of use at the same temperature, maintaining constant retention factors and selectivity.


Assuntos
Cromatografia Gasosa/métodos , Cristais Líquidos/química , Varredura Diferencial de Calorimetria , Cresóis/análise , Isomerismo , Naftalenos/análise , Fenóis/análise , Hidrocarbonetos Policíclicos Aromáticos/análise , Polietilenoglicóis/química , Temperatura , Termogravimetria
10.
Plant Physiol Biochem ; 144: 466-479, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31655345

RESUMO

Pyricularia oryzae (P. oryzae), one of the most devastating fungal pathogens, is the cause of blast disease in rice. Infection with a blast fungus induces biological responses in the host plant that lead to its survival through the termination or suppression of pathogen growth, and metabolite compounds play vital roles in plant interactions with a wide variety of other organisms. Numerous studies have indicated that rice has a multi-layered plant immune system that includes pre-developed (e.g., cell wall and phytoanticipins), constitutive and inducible (phytoalexins) defence barriers against stresses. Significant progress towards understanding the basis of the molecular mechanisms underlying the defence responses of rice to P. oryzae has been achieved. Nonetheless, even though the important metabolites in the responses of rice to pathogens have been identified, their exact mechanisms and their contributions to plant immunity against blast fungi have not been elucidated. The purpose of this review is to summarize and discuss recent advances towards the understanding of the integrated metabolite variations in rice after P. oryzae invasion.


Assuntos
Oryza/metabolismo , Oryza/microbiologia , Adaptação Fisiológica , Interações Hospedeiro-Patógeno , Magnaporthe/patogenicidade , Doenças das Plantas/microbiologia , Imunidade Vegetal
11.
Biomaterials ; 219: 119357, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31351245

RESUMO

In the last few years, zwitterionic polymers have been developed as antifouling surface coatings. However, their ability to completely suppress protein adsorption at the surface of nanoparticles in complex biological media remains undemonstrated. Here we investigate the formation of hard (irreversible) and soft (reversible) protein corona around model nanoparticles (NPs) coated with sulfobetaine (SB), phosphorylcholine (PC) and carboxybetaine (CB) polymer ligands in model albumin solutions and in whole serum. We show for the first time a complete absence of protein corona around SB-coated NPs, while PC- and CB-coated NPs undergo reversible adsorption or partial aggregation. These dramatic differences cannot be described by naïve hard/soft acid/base electrostatic interactions. Single NP tracking in the cytoplasm of live cells corroborate these in vitro observations. Finally, while modification of SB polymers with additional charged groups lead to consequent protein adsorption, addition of small neutral targeting moieties preserves antifouling and enable efficient intracellular targeting.


Assuntos
Materiais Revestidos Biocompatíveis/química , Nanopartículas/química , Polímeros/química , Coroa de Proteína/química , Betaína/análogos & derivados , Betaína/química , Biotina/química , Hidrodinâmica , Ligantes , Fosforilcolina/química , Pontos Quânticos/química
12.
Biomed Res Int ; 2018: 3158474, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30175125

RESUMO

Drought tolerance is an important quantitative trait with multipart phenotypes that are often further complicated by plant phenology. Different types of environmental stresses, such as high irradiance, high temperatures, nutrient deficiencies, and toxicities, may challenge crops simultaneously; therefore, breeding for drought tolerance is very complicated. Interdisciplinary researchers have been attempting to dissect and comprehend the mechanisms of plant tolerance to drought stress using various methods; however, the limited success of molecular breeding and physiological approaches suggests that we rethink our strategies. Recent genetic techniques and genomics tools coupled with advances in breeding methodologies and precise phenotyping will likely reveal candidate genes and metabolic pathways underlying drought tolerance in crops. The WRKY transcription factors are involved in different biological processes in plant development. This zinc (Zn) finger protein family, particularly members that respond to and mediate stress responses, is exclusively found in plants. A total of 89 WRKY genes in japonica and 97 WRKY genes in O. nivara (OnWRKY) have been identified and mapped onto individual chromosomes. To increase the drought tolerance of rice (Oryza sativa L.), research programs should address the problem using a multidisciplinary strategy, including the interaction of plant phenology and multiple stresses, and the combination of drought tolerance traits with different genetic and genomics approaches, such as microarrays, quantitative trait loci (QTLs), WRKY gene family members with roles in drought tolerance, and transgenic crops. This review discusses the newest advances in plant physiology for the exact phenotyping of plant responses to drought to update methods of analysing drought tolerance in rice. Finally, based on the physiological/morphological and molecular mechanisms found in resistant parent lines, a strategy is suggested to select a particular environment and adapt suitable germplasm to that environment.


Assuntos
Secas , Regulação da Expressão Gênica de Plantas , Genômica , Oryza/genética , Adaptação Fisiológica , Oryza/fisiologia , Melhoramento Vegetal , Locos de Características Quantitativas , Estresse Fisiológico
13.
Biomed Res Int ; 2018: 1494157, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29721500

RESUMO

Oil palm (Elaeis guineensis Jacq) is one of the major sources of edible oil. Reducing the effect of Ganoderma, main cause of basal stem rot (BSR) on oil palm, is the main propose of this study. Understanding the oil palm defense mechanism against Ganoderma infection through monitoring changes in the secondary metabolite compounds levels before/after infection by Ganoderma under different fertilizing treatment is required. Oil palm requires macro- and microelements for growth and yield. Manipulating the nutrient for oil palm is a method to control the disease. The 3-4-month-old oil palm seedlings were given different macronutrient treatments to evaluate induction of defense related enzymes and production of secondary metabolite compounds in response to G. boninense inoculation. The observed trend of changes in the infected and uninfected seedlings was a slightly higher activity for ß-1,3-glucanases, chitinase, peroxidase, and phenylalanine ammonia-lyase during the process of pathogenesis. It was found that PR proteins gave positive response to the interaction between oil palm seedlings and Ganoderma infection. Although the responses were activated systematically, they were short-lasting as the changes in enzymes activities appeared before the occurrence of visible symptoms. Effect of different nutrients doses was obviously observed among the results of the secondary metabolite compounds. Many identified/unidentified metabolite compounds were presented, of which some were involved in plant cell defense mechanism against pathogens, mostly belonging to alkaloids with bitter-tasting nitrogenous-compounds, and some had the potential to be used as new markers to detect basal stem rot at the initial step of disease.


Assuntos
Antioxidantes/metabolismo , Arecaceae , Fertilizantes , Ganoderma , Oxirredutases/metabolismo , Doenças das Plantas/microbiologia , Proteínas de Plantas/metabolismo , Plântula , Arecaceae/enzimologia , Arecaceae/microbiologia , Plântula/enzimologia , Plântula/microbiologia
14.
Gene ; 665: 155-166, 2018 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-29684486

RESUMO

Plants maintain extensive growth flexibility under different environmental conditions, allowing them to continuously and rapidly adapt to alterations in their environment. A large portion of many plant genomes consists of transposable elements (TEs) that create new genetic variations within plant species. Different types of mutations may be created by TEs in plants. Many TEs can avoid the host's defense mechanisms and survive alterations in transposition activity, internal sequence and target site. Thus, plant genomes are expected to utilize a variety of mechanisms to tolerate TEs that are near or within genes. TEs affect the expression of not only nearby genes but also unlinked inserted genes. TEs can create new promoters, leading to novel expression patterns or alternative coding regions to generate alternate transcripts in plant species. TEs can also provide novel cis-acting regulatory elements that act as enhancers or inserts within original enhancers that are required for transcription. Thus, the regulation of plant gene expression is strongly managed by the insertion of TEs into nearby genes. TEs can also lead to chromatin modifications and thereby affect gene expression in plants. TEs are able to generate new genes and modify existing gene structures by duplicating, mobilizing and recombining gene fragments. They can also facilitate cellular functions by sharing their transposase-coding regions. Hence, TE insertions can not only act as simple mutagens but can also alter the elementary functions of the plant genome. Here, we review recent discoveries concerning the contribution of TEs to gene expression in plant genomes and discuss the different mechanisms by which TEs can affect plant gene expression and reduce host defense mechanisms.


Assuntos
Elementos de DNA Transponíveis/fisiologia , Regulação da Expressão Gênica de Plantas/fisiologia , Genoma de Planta/fisiologia , Plantas , Elementos de Resposta/fisiologia , Transcrição Gênica/fisiologia , Plantas/genética , Plantas/metabolismo
15.
Molecules ; 23(2)2018 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-29438290

RESUMO

Microsatellites, or simple sequence repeats (SSRs), are one of the most informative and multi-purpose genetic markers exploited in plant functional genomics. However, the discovery of SSRs and development using traditional methods are laborious, time-consuming, and costly. Recently, the availability of high-throughput sequencing technologies has enabled researchers to identify a substantial number of microsatellites at less cost and effort than traditional approaches. Illumina is a noteworthy transcriptome sequencing technology that is currently used in SSR marker development. Although 454 pyrosequencing datasets can be used for SSR development, this type of sequencing is no longer supported. This review aims to present an overview of the next generation sequencing, with a focus on the efficient use of de novo transcriptome sequencing (RNA-Seq) and related tools for mining and development of microsatellites in plants.


Assuntos
Arabidopsis/genética , Mineração de Dados/métodos , Sequenciamento de Nucleotídeos em Larga Escala/estatística & dados numéricos , Repetições de Microssatélites , Oryza/genética , Transcriptoma , Produtos Agrícolas , Etiquetas de Sequências Expressas , Marcadores Genéticos , Sequenciamento de Nucleotídeos em Larga Escala/instrumentação , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Anotação de Sequência Molecular , Polimorfismo Genético , Software
16.
Nutrients ; 9(11)2017 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-29143765

RESUMO

Individual characteristics, dietary intake and physical activity influence weight status; however, the contribution of each factor to weight change has not been studied. The objective was to confirm a conceptual framework by simultaneously assessing the relative influence of socioeconomic, psychological and sensory characteristics, physical activity, and dietary intake on five-year weight gain in French adults. Individual characteristics, physical activity, and dietary data were assessed at baseline in 8014 participants in the NutriNet-Santé cohort. Self-reported anthropometric data were collected at baseline and five years later. Structural equation models, stratified by baseline body mass index (BMI), were used to perform analyses. Dietary restraint was a direct predictor of weight gain, with a stronger effect than age or intake of energy-dense foods, both in non-overweight and overweight participants. In non-overweight individuals only, intake of nutrient-dense foods and physical activity were inversely associated with weight gain. Regarding dietary intake, fat liking was the most important predictor of nutrient-dense food intake and was also related to energy-dense food intake. In these models, dietary restraint appears to be a direct predictor of weight gain and fat liking is a strong determinant of dietary intake. The influence of dietary restraint on weight gain, not explained by diet, warrants further investigation.


Assuntos
Dieta , Exercício Físico , Comportamento Alimentar , Sobrepeso/fisiopatologia , Comportamento Sedentário , Fatores Socioeconômicos , Aumento de Peso , Adulto , Idoso , Idoso de 80 Anos ou mais , Índice de Massa Corporal , Dieta/efeitos adversos , Dieta Saudável , Ingestão de Alimentos , Emoções , Feminino , França/epidemiologia , Humanos , Masculino , Pessoa de Meia-Idade , Modelos Teóricos , Valor Nutritivo , Sobrepeso/epidemiologia , Sobrepeso/prevenção & controle , Sobrepeso/psicologia , Fatores de Proteção , Fatores de Risco , Fatores de Tempo , Adulto Jovem
17.
ACS Appl Mater Interfaces ; 9(21): 18161-18169, 2017 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-28467039

RESUMO

Fluorescent semiconductor quantum dots (QDs) exhibit several unique properties that make them suitable candidates for biomolecular sensing, including high brightness, photostability, broad excitation, and narrow emission spectra. Assembling these QDs into robust and functionalizable nanosized clusters (QD-NSCs) can provide fluorescent probes that are several orders of magnitude brighter than individual QDs, thus allowing an even greater sensitivity of detection with simplified instrumentation. However, the formation of compact, antifouling, functionalizable, and stable QD-NSCs remains a challenging task, especially for a use at ultralow concentrations for single-molecule detection. Here, we describe the development of fluorescent QD-NSCs envisioned as a tool for fast and sensitive biomolecular recognition. First, QDs were assembled into very compact 100-150 nm diameter spherical aggregates; the final QD-NSCs were obtained by growing a cross-linked silica shell around these aggregates. Hydrolytic stability in several concentration and pH conditions is a key requirement for a potential and efficient single-molecule detection tool. However, the hydrolysis of Si-O-Si bonds leads to desorption of monosilane-based surface groups at very low silica concentrations or in a slightly basic medium. Thus, we designed a novel multidentate copolymer composed of multiple silane as well as zwitterionic monomers. Coating silica beads with this multidentate copolymer provided a robust surface chemistry that was demonstrated to be stable against hydrolysis, even at low concentrations. Copolymer-coated silica beads also showed low fouling properties and high colloidal stability in saline solutions. Furthermore, incorporation of additional azido-monomers enabled easy functionalization of QD-NSCs using copper-free bio-orthogonal cyclooctyne-azide click chemistry, as demonstrated by a biotin-streptavidin affinity test.


Assuntos
Silanos/química , Polímeros , Pontos Quânticos , Semicondutores , Dióxido de Silício
18.
Biomed Res Int ; 2017: 9064129, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28191468

RESUMO

Silicon (Si) is one of the most prevalent elements in the soil. It is beneficial for plant growth and development, and it contributes to plant defense against different stresses. The Lsi1 gene encodes a Si transporter that was identified in a mutant Japonica rice variety. This gene was not identified in fourteen Malaysian rice varieties during screening. Then, a mutant version of Lsi1 was substituted for the native version in the three most common Malaysian rice varieties, MR219, MR220, and MR276, to evaluate the function of the transgene. Real-time PCR was used to explore the differential expression of Lsi1 in the three transgenic rice varieties. Silicon concentrations in the roots and leaves of transgenic plants were significantly higher than in wild-type plants. Transgenic varieties showed significant increases in the activities of the enzymes SOD, POD, APX, and CAT; photosynthesis; and chlorophyll content; however, the highest chlorophyll A and B levels were observed in transgenic MR276. Transgenic varieties have shown a stronger root and leaf structure, as well as hairier roots, compared to the wild-type plants. This suggests that Lsi1 plays a key role in rice, increasing the absorption and accumulation of Si, then alters antioxidant activities, and improves morphological properties.


Assuntos
Genes de Plantas , Proteínas de Membrana Transportadoras/genética , Oryza/genética , Proteínas de Plantas/genética , Silício/metabolismo , Antioxidantes/metabolismo , Clorofila/metabolismo , Regulação da Expressão Gênica de Plantas , Proteínas de Fluorescência Verde/metabolismo , Proteínas de Membrana Transportadoras/metabolismo , Oryza/ultraestrutura , Fotossíntese , Proteínas de Plantas/metabolismo , Raízes de Plantas/metabolismo , Raízes de Plantas/ultraestrutura , Plantas Geneticamente Modificadas , Regeneração , Sementes/metabolismo , Transgenes
19.
Front Plant Sci ; 7: 773, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27379107

RESUMO

Magnaporthe oryzae is a rice blast fungus and plant pathogen that causes a serious rice disease and, therefore, poses a threat to the world's second most important food security crop. Plant transformation technology has become an adaptable system for cultivar improvement and to functionally analyze genes in plants. The objective of this study was to determine the effects (through over-expressing and using the CaMV 35S promoter) of Pikh on MR219 resistance because it is a rice variety that is susceptible to the blast fungus pathotype P7.2. Thus, a full DNA and coding DNA sequence (CDS) of the Pikh gene, 3172 bp, and 1206 bp in length, were obtained through amplifying the gDNA and cDNA template from a PH9-resistant rice variety using a specific primer. Agrobacterium-mediated transformation technology was also used to introduce the Pikh gene into the MR219 callus. Subsequently, transgenic plants were evaluated from the DNA to protein stages using polymerase chain reaction (PCR), semi-quantitative RT-PCR, real-time quantitative PCR and high performance liquid chromatography (HPLC). Transgenic plants were also compared with a control using a real-time quantification technique (to quantify the pathogen population), and transgenic and control plants were challenged with the local most virulent M. oryzae pathotype, P7.2. Based on the results, the Pikh gene encodes a hydrophilic protein with 18 sheets, 4 helixes, and 21 coils. This protein contains 401 amino acids, among which the amino acid sequence from 1 to 376 is a non-cytoplasmic region, that from 377 to 397 is a transmembrane region, and that from 398 to 401 is a cytoplasmic region with no identified disordered regions. The Pikh gene was up-regulated in the transgenic plants compared with the control plants. The quantity of the amino acid leucine in the transgenic rice plants increased significantly from 17.131 in the wild-type to 47.865 mg g(-1) in transgenic plants. The M. oryzae population was constant at 31, 48, and 72 h after inoculation in transgenic plants, while it was increased in the inoculated control plants. This study successfully clarified that over-expression of the Pikh gene in transgenic plants can improve their blast resistance against the M. oryzae pathotype P7.2.

20.
Gene ; 587(2): 107-19, 2016 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-27154819

RESUMO

Alternative pre-mRNA splicing provides a source of vast protein diversity by removing non-coding sequences (introns) and accurately linking different exonic regions in the correct reading frame. The regulation of alternative splicing is essential for various cellular functions in both pathological and physiological conditions. In eukaryotic cells, this process is commonly used to increase proteomic diversity and to control gene expression either co- or post-transcriptionally. Alternative splicing occurs within a megadalton-sized, multi-component machine consisting of RNA and proteins; during the splicing process, this complex undergoes dynamic changes via RNA-RNA, protein-protein and RNA-protein interactions. Co-transcriptional splicing functionally integrates the transcriptional machinery, thereby enabling the two processes to influence one another, whereas post-transcriptional splicing facilitates the coupling of RNA splicing with post-splicing events. This review addresses the structural aspects of spliceosomes and the mechanistic implications of their stepwise assembly on the regulation of pre-mRNA splicing. Moreover, the role of phosphorylation-based, signal-induced changes in the regulation of the splicing process is demonstrated.


Assuntos
Precursores de RNA/genética , Splicing de RNA , Fatores de Processamento de Serina-Arginina/metabolismo , Animais , Regulação da Expressão Gênica , Humanos , Especificidade de Órgãos , Spliceossomos/metabolismo , Transcrição Gênica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...