Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Materials (Basel) ; 15(22)2022 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-36431624

RESUMO

This research work aimed to elaborate on a new modified double-base propellant containing nitrocellulose (NC), ammonium nitrate (AN), and diethylene glycol dinitrate (DEGDN). The developed AN/NC-DEGDN formulation was successfully obtained through a casting process and fully characterized in terms of its chemical structure, morphological features, and thermal behavior. Beforehand, theoretical calculation by the CEA-NASA program was applied to select the optimal composition of the formulation. Experimental findings demonstrated the homogenous dispersion of AN oxidizer in the NC-DEGDN matrix without alteration of their molecular structures. The catalytic influence of AN on the thermal decomposition behavior of NC-DEGDN film was also elucidated by thermal analyses. When AN was incorporated into the formulation, the decomposition peak temperatures for the different decomposition processes were shifted toward lower temperatures, while the total enthalpy of decomposition increased by around 1272.24 J/g. In addition, the kinetics of the thermal decomposition of the developed modified double base propellant were investigated using DSC results coupled with model kinetic approaches. It was found that the addition of AN decreases the activation energy of nitrate esters from 134.5 kJ/mol to 118.84 kJ/mol, providing evidence for its excellent catalytic effect. Overall, this investigation could serve as a reference for developing future generation of modified double-base propellants.

2.
RSC Adv ; 11(56): 35287-35299, 2021 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-35493178

RESUMO

The present research aims to select the optimal molar ratio of hydrazine 3-nitro-1,2,4-triazol-5-one (HNTO) and ammonium nitrate (AN) to produce an energetic co-crystal. For a comparison purpose, the heat release, cost, density and hygroscopicity of the different co-crystals were evaluated. The obtained results indicated that HNTO/AN at the 1 : 3 ratio exhibited a higher heat release, better thermal stability, low water content and a reasonable cost, compared to other co-crystals. This new co-crystal was fully characterized through powder X-ray diffraction (XRD), infrared spectroscopy (FTIR) and differential scanning calorimetry (DSC), confirming that this latter displayed similar characteristics to those of the co-crystal with a 1 : 1 ratio, which was recently developed. On the other hand, the catalytic activity of two energetic coordination polymers of triaminoguanidine-cobalt (T-Co) complexes, with or without graphene oxide (GO-T-Co-T), on the thermolysis of the developed co-crystal has been also assessed by DSC under non-isothermal conditions. It is revealed that these catalysts have greatly decreased the decomposition temperature of the HNTO/AN cocrystal. Moreover, because of the complete decomposition in the case of the (HNTO/AN)/GO-T-Co-T composite, the heat release has been increased as well. Isoconversional integral kinetic methods were exploited to determine the kinetic parameters of the different systems. According to the obtained results, these catalysts have a strong catalytic action on the decomposition of the co-crystal AN/HNTO for which the activation energy and the pre-exponential factor are considerably lowered. Consequently, the developed co-crystal and the energetic catalysts could be considered as potential ingredients for the next generation of composite solid propellant formulations.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...