Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
In Vivo ; 38(3): 1152-1161, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38688615

RESUMO

BACKGROUND/AIM: The global prevalence of type 2 diabetes (T2D) continues to increase, necessitating the need for understanding the causes of its development. The widespread use of high-fructose corn syrup (HFCS) in drinks and diets is suspected to play a role in metabolic disorders. Although many studies have reported on the effects of excessive HFCS and excessive energy intakes in middle-aged individuals, few have focused on energy restriction. This study aimed to investigate the effects of excessive HFCS drink intake under energy restriction on developing T2D in early middle-aged mice. MATERIALS AND METHODS: Early middle-aged mice were divided in HFCS and control groups; they were provided either 10% HFCS water or deionized water ad libitum for 12 weeks, respectively. Total energy intake was controlled using a standard rodent diet. Oral glucose tolerance test (OGTT), insulin tolerance test (ITT), tissue weight measurements, serum parameter analyses, and mRNA expression assessments were performed. RESULTS: No increase in body and adipose tissue weight was observed with excessive HFCS intake under energy restriction. Moreover, serum lipid parameters did not differ from those of controls. However, in the OGTT and ITT, the HFCS group showed higher blood glucose levels than the control group. Moreover, the pancreatic weight and insulin II mRNA expression were reduced. CONCLUSION: The excessive HFCS drink intake under energy restriction did not induce obesity; however, it induced impaired glucose tolerance, indicating its negative effects on the pancreas in early middle-aged mice. When translated in human physiology, our results show that even if one does not become obese, excessive HFCS may affect the overall metabolic mechanism; these effects may vary depending on age.


Assuntos
Glicemia , Teste de Tolerância a Glucose , Xarope de Milho Rico em Frutose , Animais , Xarope de Milho Rico em Frutose/efeitos adversos , Xarope de Milho Rico em Frutose/administração & dosagem , Camundongos , Masculino , Diabetes Mellitus Tipo 2/induzido quimicamente , Diabetes Mellitus Tipo 2/etiologia , Diabetes Mellitus Tipo 2/metabolismo , Ingestão de Energia , Modelos Animais de Doenças , Insulina/sangue , Peso Corporal/efeitos dos fármacos , Resistência à Insulina , Obesidade/etiologia , Obesidade/metabolismo , Obesidade/induzido quimicamente
2.
Biomedicines ; 9(5)2021 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-34066196

RESUMO

The number of patients with diabetes was approximately 463 million worldwide in 2019, with almost 57.6% of this population concentrated in Asia. Asians often develop type 2 diabetes (T2D), even if they are underweight and consume a smaller amount of food. Soft drinks contain large amounts of sweeteners, such as high-fructose corn syrup (HFCS). Excessive intake of HFCS drinks is considered to be one of the causes of T2D. In the present study, we investigated the effect of excessive consumption of HFCS-water on glucose tolerance and obesity under conditions of controlled caloric intake using a mouse model. Three-week-old male ICR mice were divided into two groups and given free access to 10% HFCS-water or deionized water. The caloric intake was adjusted to be the same in both groups using a standard rodent diet. The excess HFCS-water intake did not lead to obesity, but led to impaired glucose tolerance (IGT) due to insulin-secretion defect. It affected glucose and fructose metabolism; for example, it decreased the expression of glucokinases, ketohexokinase, and glucose transporter 2 in the pancreas. These results suggest that excessive consumption of HFCS drinks, such as soft drinks, without a proper diet, induces nonobese IGT due to insulin-secretion defect.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...