Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Chem Phys ; 159(14)2023 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-37830453

RESUMO

We study the electronic spin flux (atomic-scale flow of the spin density in molecules) by a perturbation analysis and ab initio nonadiabatic calculations. We derive a general perturbative expression of the charge and spin fluxes and identify the driving perturbation of the fluxes to be the time derivative of the electron-nucleus interaction term in the Hamiltonian. We then expand the expression in molecular orbitals so as to identify relevant components of the fluxes. Our perturbation theory describes the electronic fluxes in the early stage of reactions in an intuitively clear manner. The perturbation theory is then applied to an analysis of the spin flux obtained in ab initio calculations of the radical reaction of O2 and CH3· starting from three distinct spin configurations; (a) CH3· and triplet O2 with total spin of the system set Stot=1/2 (b) CH3· and singlet O2, Stot=1/2, and (c) CH3· and triplet O2, Stot=3/2. Further analysis of the time-dependent behaviors of the spin flux in these numerical simulations reveals (i) the spin flux induces rearrangement of the local spin structure, such as reduction of the spin polarization arising from the triplet O2 and (ii) the spin flux flows from O2 to CH3· in the reaction starting from spin configuration (a) and from CH3· to O2 in that starting from configuration (b), whereas no major intermolecular spin flux was observed in that starting from configuration (c). Our study thus establishes the mechanism of the spin flux that rearranges the local spin structures associated with chemical bonds.

2.
J Comput Chem ; 44(9): 980-987, 2023 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-36564979

RESUMO

We present a new implementation of real-time time-dependent density functional theory (RT-TDDFT) for calculating excited-state dynamics of periodic systems in the open-source Python-based PySCF software package. Our implementation uses Gaussian basis functions in a velocity gauge formalism and can be applied to periodic surfaces, condensed-phase, and molecular systems. As representative benchmark applications, we present optical absorption calculations of various molecular and bulk systems and a real-time simulation of field-induced dynamics of a (ZnO)4 molecular cluster on a periodic graphene sheet. We present representative calculations on optical response of solids to infinitesimal external fields as well as real-time charge-transfer dynamics induced by strong pulsed laser fields. Due to the widespread use of the Python language, our RT-TDDFT implementation can be easily modified and provides a new capability in the PySCF code for real-time excited-state calculations of chemical and material systems.

3.
J Hazard Mater ; 423(Pt A): 127026, 2022 02 05.
Artigo em Inglês | MEDLINE | ID: mdl-34481387

RESUMO

Per- and polyfluoroalkyl substances (PFASs) are hazardous, carcinogenic, and bioaccumulative contaminants found in drinking water sources. To mitigate and remove these persistent pollutants, recent experimental efforts have focused on photo-induced processes to accelerate their degradation; however, the mechanistic details of these promising degradation processes remain unclear. To shed crucial insight on these electronic-excited state processes, we present the first study of photo-induced degradation of explicitly-solvated PFASs using excited-state, real-time time-dependent density functional theory (RT-TDDFT) calculations. Furthermore, our large-scale RT-TDDFT calculations show that these photo-induced excitations can be highly selective by enabling a charge-transfer process that only dissociates the CF bond while keeping the surrounding water molecules intact. Collectively, the RT-TDDFT techniques used in this work (1) enable a new capability for probing photo-induced mechanisms that cannot be gleaned from conventional ground-state DFT calculations and (2) provide a rationale for understanding ongoing experiments that are actively exploring photo-induced degradation of PFASs and other environmental contaminants.


Assuntos
Fluorocarbonos , Teoria Quântica , Teoria da Densidade Funcional , Água
4.
J Chem Phys ; 154(16): 164112, 2021 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-33940814

RESUMO

Analysis of electron flux within and in between molecules is crucial in the study of real-time dynamics of molecular electron wavepacket evolution such as those in attosecond laser chemistry and ultrafast chemical reaction dynamics. We here address two mutually correlated issues on the conservation law of molecular electronic flux, which serves as a key consistency condition for electron dynamics. The first one is about a close relation between "weak" nonadiabaticity and the electron dynamics in low-energy chemical reactions. We show that the electronic flux in adiabatic reactions can be consistently reproduced by taking account of nonadiabaticity. Such nonadiabaticity is usually weak in the sense that it does not have a major effect on nuclear dynamics, whereas it plays an important role in electronic dynamics. Our discussion is based on a nonadiabatic extension of the electronic wavefunction similar in idea to the complete adiabatic formalism developed by Nafie [J. Chem. Phys. 79, 4950 (1983)], which has also recently been reformulated by Patchkovskii [J. Chem. Phys. 137, 084109 (2012)]. We give straightforward proof of the theoretical assertion presented by Nafie using a time-dependent mixed quantum-classical framework and a standard perturbation expansion. Explicitly taking account of the flux conservation, we show that the nonadiabatically induced flux realizes the adiabatic time evolution of the electronic density. In other words, the divergence of the nonadiabatic flux equals the time derivative of the electronic density along an adiabatic time evolution of the target molecule. The second issue is about the accurate computationability of the flux. The calculation of flux needs an accurate representation of the (relative) quantum phase, in addition to the amplitude factor, of a total wavefunction and demands special attention for practical calculations. This paper is the first one to approach this issue directly and show how the difficulties arise explicitly. In doing so, we reveal that a number of widely accepted truncation techniques for static property calculations are potential sources of numerical flux non-conservation. We also theoretically propose alternative strategies to realize better flux conservation.

5.
J Chem Phys ; 151(8): 084102, 2019 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-31470699

RESUMO

We propose a general theoretical scheme of relativistic electron-nucleus coupled dynamics of molecules in radiation fields, which is derived from quantum electrodynamical formalism. Aiming at applications to field-induced dynamics in ultrastrong laser pulses to the magnitude of 1016 W/cm2 or even larger, we derive a nonperturbative formulation of relativistic dynamics using the Tamm-Dancoff expansion scheme, which results in, within the lowest order expansion, a time-dependent Schrödinger equation with the Coulombic and retarded transversal photon-exchange interactions. We also discuss a wavepacket type nuclear dynamics adapted for such dynamics.

6.
J Chem Phys ; 149(24): 244117, 2018 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-30599729

RESUMO

We propose a modification to the nonadiabatic surface hopping calculation method formulated in a paper by Yu et al. [Phys. Chem. Chem. Phys. 16, 25883 (2014)], which is a multidimensional extension of the Zhu-Nakamura theory with a practical diabatic gradient estimation algorithm. In our modification, their diabatic gradient estimation algorithm, which is based on a simple interpolation of the adiabatic potential energy surfaces, is replaced by an algorithm using the numerical derivatives of the adiabatic gradients. We then apply the algorithm to several models of nonadiabatic dynamics, both analytic and ab initio models, to numerically demonstrate that our method indeed widens the applicability and robustness of their method. We also discuss the validity and limitations of our new nonadiabatic surface hopping method while considering in mind potential applications to excited-state dynamics of biomolecules or unconventional nonadiabatic dynamics such as radiation decay processes in ultraintense X-ray fields.

7.
Struct Dyn ; 2(4): 041707, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-26798806

RESUMO

We present the implementation of an electronic-structure approach dedicated to ionization dynamics of molecules interacting with x-ray free-electron laser (XFEL) pulses. In our scheme, molecular orbitals for molecular core-hole states are represented by linear combination of numerical atomic orbitals that are solutions of corresponding atomic core-hole states. We demonstrate that our scheme efficiently calculates all possible multiple-hole configurations of molecules formed during XFEL pulses. The present method is suitable to investigate x-ray multiphoton multiple ionization dynamics and accompanying nuclear dynamics, providing essential information on the chemical dynamics relevant for high-intensity x-ray imaging.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...