Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Genet Mol Biol ; 33(2): 279-84, 2010 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-21637483

RESUMO

This study evaluated the types of gene action governing the inheritance of resistance to Phytophthora nicotianae necrosis in populations derived from two crosses involving two susceptible (Beldi and Nabeul II) and one resistant (CM334) cultivars of pepper (Capsicum annuum L.). Populations, composed of Pr, Ps, F(1) , F (2) , BC (1) Pr, and BC (1) Ps generations, were inoculated with six P. nicotianae isolates. Generation means analysis indicated that an additive-dominance model was appropriate for P. nicotianae isolates Pn (Ko1) , Pn (Ko2) and Pn (Kr1) , which showed low aggressiveness in the two crosses. For the more aggressive isolates Pn (Bz1) , Pn (Bz2) and Pn (Kr2) , epistasis was an integral component of resistance in the two crosses. The presence of epistasis in the resistance of pepper to P. nicotianae was dependent on the level of aggressiveness of the isolates. Selection in pepper with less aggressive isolates was efficient, but not with more aggressive isolates; on the other hand, selection with more aggressive isolates was more stable. The minimum number of genes controlling resistance was estimated at up to 2.71. In the majority of cases, the additive variance was significant and greater than the environmental and dominance variance.

2.
Genet. mol. biol ; 33(2): 279-284, 2010. graf, tab
Artigo em Inglês | LILACS | ID: lil-548801

RESUMO

This study evaluated the types of gene action governing the inheritance of resistance to Phytophthora nicotianae necrosis in populations derived from two crosses involving two susceptible (Beldi and Nabeul II) and one resistant (CM334) cultivars of pepper (Capsicum annuum L.). Populations, composed of Pr, Ps, F1,F2,BC1Pr, and BC1Ps generations, were inoculated with six P. nicotianae isolates. Generation means analysis indicated that an additive-dominance model was appropriate for P. nicotianae isolates PnKo1,PnKo2 and PnKr1, which showed low aggressiveness in the two crosses. For the more aggressive isolates PnBz1,PnBz2 and PnKr2, epistasis was an integral component of resistance in the two crosses. The presence of epistasis in the resistance of pepper to P. nicotianae was dependent on the level of aggressiveness of the isolates. Selection in pepper with less aggressive isolates was efficient, but not with more aggressive isolates; on the other hand, selection with more aggressive isolates was more stable. The minimum number of genes controlling resistance was estimated at up to 2.71. In the majority of cases, the additive variance was significant and greater than the environmental and dominance variance.

3.
Ann Bot ; 96(5): 913-24, 2005 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-16109735

RESUMO

BACKGROUND AND AIMS: Root axes elongate slowly and swell radially under mechanical impedance. However, temporal and spatial changes to impeded root apices have only been described qualitatively. This paper aims (a) to quantify morphological changes to root apices and (b) assess whether these changes pre-dispose young root tissues to hypoxia. METHODS: Lupin (Lupinus angustifolius) seedlings were grown into coarse sand that was pressurized through a diaphragm to generate mechanical impedance on growing root axes. In situ observations yielded growth rates and root response to hypoxia. Roots were then removed to assess morphology, cell lengths and local growth velocities. Oxygen uptake into excised segments was measured. KEY RESULTS: An applied pressure of 15 kPa slowed root extension by 75% after 10-20 h while the same axes thickened by about 50%. The most terminal 2-3 mm of axes did not respond morphologically to impedance, in spite of the slower flux of cells out of this region. The basal boundary of root extension encroached to within 4 mm of the apex (cf. 10 mm in unimpeded roots), while radial swelling extended 10 mm behind the apex in impeded roots. Oxygen demand by segments of these short, thick, impeded roots was significantly different from segments of unimpeded roots when the zones of elongation in each treatment were compared. Specifically, impeded roots consumed O2 faster and O2 consumption was more likely to be O2-limited over a substantial proportion of the elongation zone, making these roots more susceptible to O2 deficit. Impeded roots used more O2 per unit growth (measured as either unit of elongation or unit of volumetric expansion) than unimpeded roots. Extension of impeded roots in situ was O2-limited at sub-atmospheric O2 levels (21% O2), while unimpeded roots were only limited below 11% O2. CONCLUSIONS: The shift in the zone of extension towards the apex in impeded roots coincided with greater vulnerability to hypoxia even after soil was removed. Roots still encased in impeded soil are likely to suffer from marked O2 deficits.


Assuntos
Hipóxia Celular , Lupinus/crescimento & desenvolvimento , Lupinus/metabolismo , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/metabolismo , Lupinus/efeitos dos fármacos , Oxigênio/metabolismo , Oxigênio/farmacologia , Consumo de Oxigênio/efeitos dos fármacos , Raízes de Plantas/citologia , Raízes de Plantas/efeitos dos fármacos , Pressão
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...