Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Pathogens ; 11(12)2022 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-36558735

RESUMO

Phaeohyphomycosis caused by Exophiala species represents an important disease of concern for farmed and aquarium-housed fish. The objective of this study was to summarize the clinical findings and diagnosis of Exophiala infections in aquarium-housed Cyclopterus lumpus. Clinical records and postmortem pathology reports were reviewed for 15 individuals from 5 public aquaria in the United States and Canada from 2007 to 2015. Fish most commonly presented with cutaneous ulcers and progressive clinical decline despite topical or systemic antifungal therapy. Antemortem fungal culture of cutaneous lesions resulted in colonial growth for 7/12 samples from 8 individuals. Amplification of the internal transcribed spacer region (ITS) of nuclear rDNA identified Exophiala angulospora or Exophiala aquamarina in four samples from three individuals. Postmortem histopathologic findings were consistent with phaeohyphomycosis, with lesions most commonly found in the integument (11/15), gill (9/15), or kidney (9/15) and evidence of fungal angioinvasion and dissemination. DNA extraction and subsequent ITS sequencing from formalin-fixed paraffin-embedded tissues of seven individuals identified E. angulospora, E. aquamarina, or Cyphellophora sp. in four individuals. Lesion description, distribution, and Exophiala spp. identifications were similar to those reported in farmed C. lumpus. Antemortem clinical and diagnostic findings of phaeohyphomycosis attributable to several species of Exophiala provide insight on the progression of Exophiala infections in lumpfish that may contribute to management of the species in public aquaria and under culture conditions.

2.
Elife ; 92020 05 12.
Artigo em Inglês | MEDLINE | ID: mdl-32393435

RESUMO

Mammalian articular cartilage is an avascular tissue with poor capacity for spontaneous repair. Here, we show that embryonic development of cartilage in the skate (Leucoraja erinacea) mirrors that of mammals, with developing chondrocytes co-expressing genes encoding the transcription factors Sox5, Sox6 and Sox9. However, in skate, transcriptional features of developing cartilage persist into adulthood, both in peripheral chondrocytes and in cells of the fibrous perichondrium that ensheaths the skeleton. Using pulse-chase label retention experiments and multiplexed in situ hybridization, we identify a population of cycling Sox5/6/9+ perichondral progenitor cells that generate new cartilage during adult growth, and we show that persistence of chondrogenesis in adult skates correlates with ability to spontaneously repair cartilage injuries. Skates therefore offer a unique model for adult chondrogenesis and cartilage repair and may serve as inspiration for novel cell-based therapies for skeletal pathologies, such as osteoarthritis.


For our joints to move around freely, they are lubricated with cartilage. In growing mammals, this tissue is continuously made by the body. But, by adulthood, this cartilage will have been almost entirely replaced by bone. It is also difficult for adult bodies to replenish what cartilage does remain ­ such as that in the joints. When growing new cartilage, the body uses so-called progenitor cells, which have the ability to turn into different cell types. Progenitor cells are recruited to the joints, where they transform into cartilage cells called chondrocytes, which generate new cartilage. But adults lack these progenitor cells, leaving them unfit to heal damaged cartilage after injury or diseases like osteoarthritis. In contrast, certain groups of fishes, such as skates, sharks and rays, produce cartilage throughout their life ­ indeed their whole skeleton is made of cartilage. So, what is the difference between these cartilaginous fishes and mammals? Why can they generate cartilage throughout their lives, while humans are unable to? And does this mean that these adult fish are better at healing injured cartilage? Marconi et al. used skates (Leucoraja erinacea) to study how cartilage develops, grows and heals in a cartilaginous fish. Progenitor cells were found in a layer that wraps around the cartilage skeleton (called the perichondrium). These cells were also shown to activate genes that control cartilage development. By labelling these progenitor cells, their presence and movements could be tracked around the fish. Marconi et al. found progenitor cells in adult skates that were able to generate chondrocytes. Skates were also shown to spontaneously repair damaged cartilage in experiments where cartilage was injured. Marconi et al. have identified the skate as a new animal model for studying cartilage growth and repair. Studying the mechanisms that skate progenitor cells use for generating cartilage could lead to improvements in current therapies used for repairing cartilage in the joints.


Assuntos
Cartilagem/fisiologia , Condrogênese , Rajidae/fisiologia , Nadadeiras de Animais/embriologia , Nadadeiras de Animais/crescimento & desenvolvimento , Nadadeiras de Animais/metabolismo , Animais , Cartilagem/embriologia , Cartilagem/crescimento & desenvolvimento , Cartilagem/lesões , Proliferação de Células , Condrócitos/citologia , Condrócitos/metabolismo , Matriz Extracelular/genética , Matriz Extracelular/metabolismo , Expressão Gênica , Rajidae/genética , Rajidae/crescimento & desenvolvimento , Células-Tronco/citologia , Células-Tronco/fisiologia , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
3.
PeerJ ; 7: e7061, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31396437

RESUMO

An ideal suture material supports healing, minimizes inflammation, and decreases the likelihood of secondary infection. While there are published recommendations for suture materials in some invertebrates, there are no published recommendations for Limulus polyphemus or any chelicerate. This study evaluates the histological reaction of horseshoe crabs to five commonly used suture materials: monofilament nylon, silk, poliglecaprone, polydioxanone, and polyglycolic acid. None of the materials were superior with regards to holding nor was there any dehiscence. Nylon evoked the least amount of tissue reaction. This work also provides a histopathological description of the soft membrane at the hinge area between the opisthosoma and telson (telson ligament) and comments on euthanasia with intracardiac eugenol.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...