Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Heredity (Edinb) ; 115(4): 293-301, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25690179

RESUMO

Phenotypic plasticity is ubiquitous and generally regarded as a key mechanism for enabling organisms to survive in the face of environmental change. Because no organism is infinitely or ideally plastic, theory suggests that there must be limits (for example, the lack of ability to produce an optimal trait) to the evolution of phenotypic plasticity, or that plasticity may have inherent significant costs. Yet numerous experimental studies have not detected widespread costs. Explicitly differentiating plasticity costs from phenotype costs, we re-evaluate fundamental questions of the limits to the evolution of plasticity and of generalists vs specialists. We advocate for the view that relaxed selection and variable selection intensities are likely more important constraints to the evolution of plasticity than the costs of plasticity. Some forms of plasticity, such as learning, may be inherently costly. In addition, we examine opportunities to offset costs of phenotypes through ontogeny, amelioration of phenotypic costs across environments, and the condition-dependent hypothesis. We propose avenues of further inquiry in the limits of plasticity using new and classic methods of ecological parameterization, phylogenetics and omics in the context of answering questions on the constraints of plasticity. Given plasticity's key role in coping with environmental change, approaches spanning the spectrum from applied to basic will greatly enrich our understanding of the evolution of plasticity and resolve our understanding of limits.


Assuntos
Evolução Biológica , Meio Ambiente , Aptidão Genética , Fenótipo , Adaptação Biológica/genética , Variação Genética , Seleção Genética
2.
Proc Biol Sci ; 280(1758): 20122019, 2013 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-23466982

RESUMO

The evolution of male ornamentation often reflects compromises between sexual and natural selection, but it may also be influenced by phenotypic plasticity. We investigated the developmental plasticity of male colour ornamentation in Trinidadian guppies in response to two environmental variables that covary in nature: predation risk and food availability. We found that exposure to chemical predator cues delayed the development of pigment-based colour elements, which are conspicuous to visual-oriented predators. Predator cues also reduced the size of colour elements at the time of maturity and caused adult males to be less colourful. To the best of our knowledge, these findings provide the first example of a plastic reduction in the development of a sexually selected male ornament in response to predator cues. The influence of predator cues on ornamentation probably affects individual fitness by reducing conspicuousness to predators, but could reduce attractiveness to females. Reduced food availability during development caused males to delay the development of colour elements and mature later, probably reflecting a physiological constraint, but their coloration at maturity and later in adulthood was largely unaffected, suggesting that variation in food quantity without variation in quality does not contribute to condition dependence of the trait.


Assuntos
Dieta , Cadeia Alimentar , Pigmentação , Poecilia/fisiologia , Animais , Evolução Biológica , Sinais (Psicologia) , Feminino , Masculino , Fenótipo , Poecilia/genética , Poecilia/crescimento & desenvolvimento , Seleção Genética , Trinidad e Tobago
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...