Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
1.
Artigo em Inglês | MEDLINE | ID: mdl-38681506

RESUMO

Background: Essential tremor patients may find that low alcohol amounts suppress tremor. A candidate mechanism is modulation of α6ß3δ extra-synaptic GABAA receptors, that in vitro respond to non-intoxicating alcohol levels. We previously found that low-dose alcohol reduces harmaline tremor in wild-type mice, but not in littermates lacking δ or α6 subunits. Here we addressed whether low-dose alcohol requires the ß3 subunit for tremor suppression. Methods: We tested whether low-dose alcohol suppresses tremor in cre-negative mice with intact ß3 exon 3 flanked by loxP, and in littermates in which this region was excised by cre expressed under the α6 subunit promotor. Tremor in the harmaline model was measured as a percentage of motion power in the tremor bandwidth divided by overall motion power. Results: Alcohol, 0.500 and 0.575 g/kg, reduced harmaline tremor compared to vehicle-treated controls in floxed ß3 cre- mice, but had no effect on tremor in floxed ß3 cre+ littermates that have ß3 knocked out. This was not due to potential interference of α6 expression by the insertion of the cre gene into the α6 gene since non-floxed ß3 cre+ and cre- littermates exhibited similar tremor suppression by alcohol. Discussion: As α6ß3δ GABAA receptors are sensitive to low-dose alcohol, and cerebellar granule cells express ß3 and are the predominant brain site for α6 and δ expression together, our overall findings suggest alcohol acts to suppress tremor by modulating α6ß3δ GABAA receptors on these cells. Novel drugs that target this receptor may potentially be effective and well-tolerated for essential tremor. Highlights: We previously found with the harmaline essential tremor model that GABAA receptors containing α6 and δ subunits mediate tremor suppression by alcohol. We now show that ß3 subunits in α6-expressing cells, likely cerebellar granule cells, are also required, indicating that alcohol suppresses tremor by modulating α6ß3δ extra-synaptic GABAA receptors.


Assuntos
Tremor Essencial , Etanol , Harmalina , Receptores de GABA-A , Animais , Receptores de GABA-A/genética , Receptores de GABA-A/metabolismo , Harmalina/farmacologia , Tremor Essencial/tratamento farmacológico , Tremor Essencial/genética , Camundongos , Etanol/farmacologia , Depressores do Sistema Nervoso Central/farmacologia , Modelos Animais de Doenças , Masculino , Camundongos Knockout
2.
Artigo em Inglês | MEDLINE | ID: mdl-37900009

RESUMO

Background: Prior work using GABAA receptor subunit knockouts and the harmaline model has indicated that low-dose alcohol, gaboxadol, and ganaxolone suppress tremor via α6ßδ GABAA receptors. This suggests that drugs specifically enhancing the action of α6ßδ or α6ßγ2 GABAA receptors, both predominantly expressed on cerebellar granule cells, would be effective against tremor. We thus examined three drugs described by in vitro studies as selective α6ßδ (ketamine) or α6ßγ2 (Compound 6, flumazenil) receptor modulators. Methods: In the first step of evaluation, the maximal dose was sought at which 6/6 mice pass straight wire testing, a sensitive test for psychomotor impairment. Only non-impairing doses were used to evaluate for anti-tremor efficacy in the harmaline model, which was assessed in wildtype and α6 subunit knockout littermates. Results: Ketamine, in maximally tolerated doses of 2.0 and 3.5 mg/kg had minimal effect on harmaline tremor in both genotypes. Compound 6, at well-tolerated doses of 1-10 mg/kg, effectively suppressed tremor in both genotypes. Flumazenil suppressed tremor in wildtype mice at doses (0.015-0.05 mg/kg) far lower than those causing straight wire impairment, and did not suppress tremor in α6 knockout mice. Discussion: Modulators of α6ßδ and α6ßγ2 GABAA receptors warrant attention for novel therapies as they are anticipated to be effective and well-tolerated. Ketamine likely failed to attain α6ßδ-active levels. Compound 6 is an attractive candidate, but further study is needed to clarify its mechanism of action. The flumazenil results provide proof of principle that targeting α6ßγ2 receptors represents a worthy strategy for developing essential tremor therapies. Highlights: We tested for harmaline tremor suppression drugs previously described as in vitro α6ßδ or α6ßγ2 GABAA receptor-selective modulators. Well-tolerated flumazenil doses suppressed tremor in α6-wildtype but not α6-knockout mice. Compound 6 and ketamine failed to display this profile, likely from off-target effects. Selective α6 modulators hold promise as tremor therapy.


Assuntos
Tremor Essencial , Ketamina , Camundongos , Humanos , Animais , Tremor Essencial/tratamento farmacológico , Receptores de GABA-A/genética , Tremor , Harmalina/farmacologia , Harmalina/uso terapêutico , Flumazenil/farmacologia , Flumazenil/uso terapêutico , Ketamina/uso terapêutico , Camundongos Knockout , Ácido gama-Aminobutírico/uso terapêutico
3.
Artigo em Inglês | MEDLINE | ID: mdl-37214542

RESUMO

Background: A long-standing question is why essential tremor often responds to non-intoxicating amounts of alcohol. Blood flow imaging and high-density electroencephalography have indicated that alcohol acts on tremor within the cerebellum. As extra-synaptic δ-subunit-containing GABAA receptors are sensitive to low alcohol levels, we wondered whether these receptors mediate alcohol's anti-tremor effect and, moreover, whether the δ-associated GABAA receptor α6 subunit, found abundantly in the cerebellum, is required. Methods: We tested the hypotheses that low-dose alcohol will suppress harmaline-induced tremor in wild-type mice, but not in littermates lacking GABAA receptor δ subunits, nor in littermates lacking α6 subunits. As the neurosteroid ganaxolone also activates extra-synaptic GABAA receptors, we similarly assessed this compound. The harmaline mouse model of essential tremor was utilized to generate tremor, measured as a percentage of motion power in the tremor bandwidth (9-16 Hz) divided by background motion power at 0.25-32 Hz. Results: Ethanol, 0.500 and 0.575 g/kg, and ganaxolone, 7 and 10 mg/kg, doses that do not impair performance in a sensitive psychomotor task, reduced harmaline tremor compared to vehicle-treated controls in wild-type mice but failed to suppress tremor in littermates lacking the δ or the α6 GABAA receptor subunit. Discussion: As cerebellar granule cells are the predominant brain site intensely expressing GABAA receptors containing both α6 and δ subunits, these findings suggest that this is where alcohol acts to suppress tremor. It is anticipated that medications designed specifically to target α6ßδ-containing GABAA receptors may be effective and well-tolerated for treating essential tremor. Highlights: How does alcohol temporarily ameliorate essential tremor? This study with a mouse model found that two specific kinds of GABA receptor subunits were needed for alcohol to work. As receptors with both these subunits are found mainly in cerebellum, this work suggests this is where alcohol acts to suppress tremor.


Assuntos
Tremor Essencial , Receptores de GABA-A , Animais , Humanos , Camundongos , Tremor Essencial/tratamento farmacológico , Etanol/farmacologia , Ácido gama-Aminobutírico/metabolismo , Harmalina/efeitos adversos , Tremor/tratamento farmacológico
4.
Int Rev Neurobiol ; 163: 133-165, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35750361

RESUMO

We consider the question whether the inferior olive (IO) is required for essential tremor (ET). Much evidence shows that the olivocerebellar system is the main system capable of generating the widespread synchronous oscillatory Purkinje cell (PC) complex spike (CS) activity across the cerebellar cortex that would be capable of generating the type of bursting cerebellar output from the deep cerebellar nuclei (DCN) that could underlie tremor. Normally, synchronous CS activity primarily reflects the effective electrical coupling of IO neurons by gap junctions, and traditionally, ET research has focused on the hypothesis of increased coupling of IO neurons as the cause of hypersynchronous CS activity underlying tremor. However, recent pathology studies of brains from humans with ET and evidence from mutant mice, particularly the hotfoot17 mouse, that largely replicate the pathology of ET, suggest that the abnormal innervation of multiple Purkinje cells (PCs) by climbing fibers (Cfs) is related to tremor. In addition, ET brains show partial PC loss and axon terminal sprouting by surviving PCs. This may provide another mechanism for tremor. It is proposed that in ET, these three mechanisms may promote tremor. They all involve hypersynchronous DCN activity and an intact IO, but the level at which excessive synchronization occurs may be at the IO level (from abnormal afferent activity to this nucleus), the PC level (via aberrant Cfs), or the DCN level (via terminal PC collateral innervation).


Assuntos
Tremor Essencial , Animais , Núcleos Cerebelares , Cerebelo/fisiologia , Humanos , Camundongos , Núcleo Olivar/fisiologia , Tremor
5.
Mov Disord ; 36(8): 1944-1949, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-33764619

RESUMO

BACKGROUND: Available essential tremor (ET) therapies have limitations. OBJECTIVES: The objective of this study was to evaluate CX-8998, a selective T-type calcium channel modulator, in essential tremor. METHODS: Patients 18-75 years old with moderate to severe essential tremor were randomized 1:1 to receive CX-8998 (titrated to 10 mg twice daily) or placebo. The primary end point was change from baseline to day 28 in The Essential Tremor Rating Assessment Scale performance subscale scored by independent blinded video raters. Secondary outcomes included in-person blinded investigator rating of The Essential Tremor Rating Assessment Scale performance subscale, The Essential Tremor Rating Assessment Scale activities of daily living subscale, and Kinesia ONE accelerometry. RESULTS: The video-rated The Essential Tremor Rating Assessment Scale performance subscale was not different for CX-8998 (n = 39) versus placebo (n = 44; P = 0.696). CX-8998 improved investigator-rated The Essential Tremor Rating Assessment Scale performance subscale (P = 0.017) and The Essential Tremor Rating Assessment Scale activities of daily living (P = 0.049) but not Kinesia ONE (P = 0.421). Adverse events with CX-8998 included dizziness (21%), headache (8%), euphoric mood (6%), and insomnia (6%). CONCLUSIONS: The primary efficacy end point was not met; however, CX-8998 improved some assessments of essential tremor, supporting further clinical investigation. © 2021 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society. This article has been contributed to by US Government employees and their work is in the public domain in the USA.


Assuntos
Tremor Essencial , Atividades Cotidianas , Método Duplo-Cego , Tremor Essencial/tratamento farmacológico , Humanos , Resultado do Tratamento
6.
Cerebellum ; 20(2): 266-281, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33048308

RESUMO

We review advances in understanding Purkinje cell (PC) complex spike (CS) physiology that suggest increased CS synchrony underlies syndromic essential tremor (ET). We searched PubMed for papers describing factors that affect CS synchrony or cerebellar circuits potentially related to tremor. Inferior olivary (IO) neurons are electrically coupled, with the degree of coupling controlled by excitatory and GABAergic inputs. Clusters of coupled IO neurons synchronize CSs within parasagittal bands via climbing fibers (Cfs). When motor cortex is stimulated in rats at varying frequencies, whisker movement occurs at ~10 Hz, correlated with synchronous CSs, indicating that the IO/CS oscillatory rhythm gates movement frequency. Intra-IO injection of the GABAA receptor antagonist picrotoxin increases CS synchrony, increases whisker movement amplitude, and induces tremor. Harmaline and 5-HT2a receptor activation also increase IO coupling and CS synchrony and induce tremor. The hotfoot17 mouse displays features found in ET brains, including cerebellar GluRδ2 deficiency and abnormal PC Cf innervation, with IO- and PC-dependent cerebellar oscillations and tremor likely due to enhanced CS synchrony. Heightened coupling within the IO oscillator leads, through its dynamic control of CS synchrony, to increased movement amplitude and, when sufficiently intense, action tremor. Increased CS synchrony secondary to aberrant Cf innervation of multiple PCs likely also underlies hotfoot17 tremor. Deep cerebellar nucleus (DCN) hypersynchrony may occur secondary to increased CS synchrony but might also occur from PC axonal terminal sprouting during partial PC loss. Through these combined mechanisms, increased CS/DCN synchrony may plausibly underlie syndromic ET.


Assuntos
Núcleos Cerebelares/fisiopatologia , Tremor Essencial/fisiopatologia , Células de Purkinje/fisiologia , Potenciais de Ação/fisiologia , Animais , Humanos
7.
Mov Disord Clin Pract ; 7(4): 399-404, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-32373656

RESUMO

BACKGROUND: Perampanel is a noncompetitive antagonist of alpha-amino-3-hydroxy-5-methylisoxazole propionic acid glutamate receptors suggested to modulate tremor. OBJECTIVES: To assess the efficacy and tolerability of perampanel for essential tremor. METHODS: This was a double-blind, placebo-controlled, randomized, cross-over trial involving 26 patients titrated to 8 mg/day or a lower maximally tolerated dose as monotherapy or adjunct to antitremor medication. Tremor was assessed at the beginning and end of each 14-week treatment arm. The primary endpoint was change in the videotaped performance subscale of The Essential Tremor Rating Assessment Scale, scored by a blinded rater. Secondary endpoints included change in The Essential Tremor Rating Assessment Scale Activity of Daily Living and Quality of Life in Essential Tremor and Subject Global Impression of Change subscales. RESULTS: Data are available for 15 and 11 participants who completed placebo and perampanel arms, respectively. Perampanel was superior to placebo on the primary endpoint (P = 0.028), Activity of Daily Living (P = 0.009), and Subject Global Impression of Change (P = 0.016), but not Quality of Life (p = 0.48). Video scores were rated >50% improved in 3/11 on perampanel and 0/15 on placebo. Adverse events were more likely on perampanel (especially at >4 mg/day) than on placebo, leading to withdrawal (36% vs. 10%) and dose reduction (41% vs. 15%). Adverse events more common with perampanel included imbalance/falls (50% vs. 10%), dizziness (36% vs. 10%), and irritability (27% vs. 5%). CONCLUSIONS: These findings suggest that perampanel exerts efficacy for some persons with essential tremor, but this population appears prone to adverse events.

8.
Cerebellum ; 18(6): 1036-1063, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31124049

RESUMO

Tremor is the most common movement disorder; however, we are just beginning to understand the brain circuitry that generates tremor. Various neuroimaging, neuropathological, and physiological studies in human tremor disorders have been performed to further our knowledge of tremor. But, the causal relationship between these observations and tremor is usually difficult to establish and detailed mechanisms are not sufficiently studied. To overcome these obstacles, animal models can provide an important means to look into human tremor disorders. In this manuscript, we will discuss the use of different species of animals (mice, rats, fruit flies, pigs, and monkeys) to model human tremor disorders. Several ways to manipulate the brain circuitry and physiology in these animal models (pharmacology, genetics, and lesioning) will also be discussed. Finally, we will discuss how these animal models can help us to gain knowledge of the pathophysiology of human tremor disorders, which could serve as a platform towards developing novel therapies for tremor.


Assuntos
Encéfalo/diagnóstico por imagem , Consenso , Prova Pericial , Modelos Animais , Rede Nervosa/diagnóstico por imagem , Tremor/diagnóstico por imagem , Animais , Encéfalo/fisiopatologia , Drosophila , Prova Pericial/normas , Haplorrinos , Camundongos , Rede Nervosa/fisiopatologia , Ratos , Suínos , Tremor/fisiopatologia
9.
Artigo em Inglês | MEDLINE | ID: mdl-30191083

RESUMO

Background: Metabolic imaging has revealed excessive cerebellar activity in essential tremor patients. Golgi cells control cerebellar activity by releasing gamma-aminobutyric acid (GABA) onto synaptic and extrasynaptic receptors on cerebellar granule cells. We postulated that the extrasynaptic GABAA receptor-specific agonist THIP (gaboxadol; 4,5,6,7-tetrahydroisoxazolo[5,4-c]pyridin-3-ol) would suppress tremor in the harmaline model of essential tremor and, since cerebellar extrasynaptic receptors contain α6 and δ subunits, would fail to do so in mice lacking either subunit. Methods: Digitally measured motion power, expressed as 10-16 Hz power (the tremor bandwidth) divided by background 8-32 Hz motion power, was accessed during pre-harmaline baseline, pre-THIP harmaline exposure, and after THIP administration (0, 2, or 3 mg/kg). These low doses were chosen as they did not impair performance on the straight wire test, a sensitive test for psychomotor impairment. Littermate δ wild-type and knockout (Gabrd+/+, Gabrd-/-) and littermate α6 wild-type and knockout (Gabra6+/+, Gabra6-/- ) mice were tested. Results: Gabrd+/+ mice displayed tremor reduction at 3 mg/kg THIP but not 2 mg/kg, and Gabra6+/+ mice showed tremor reduction at 2 and 3 mg/kg. Their respective subunit knockout littermates displayed no tremor reduction compared with vehicle controls at either dose. Discussion: The loss of anti-tremor efficacy with deletion of either δ or α6 GABAA receptor subunits indicates that extrasynaptic receptors containing both subunits, most likely located on cerebellar granule cells where they are highly expressed, mediate tremor suppression by THIP. A medication designed to activate only these receptors may display a favorable profile for treating essential tremor.


Assuntos
Agonistas de Receptores de GABA-A/farmacologia , Isoxazóis/farmacologia , Receptores de GABA-A/metabolismo , Tremor/tratamento farmacológico , Tremor/metabolismo , Animais , Cerebelo/efeitos dos fármacos , Cerebelo/metabolismo , Tremor Essencial/metabolismo , Feminino , Harmalina , Masculino , Camundongos da Linhagem 129 , Camundongos Endogâmicos C57BL , Camundongos Knockout , Receptores de GABA-A/genética
10.
Artigo em Inglês | MEDLINE | ID: mdl-29971194

RESUMO

Background: Increased depression, hearing loss, dementia, alcoholism, and mortality in essential tremor patients remain unexplained. We investigated whether conditions associated with tremor are linked to chronic stress. Methods: The FY2013 Veterans Affairs database was queried for 38 selected dual diagnosis combinations in 5,854,223 veterans aged 21-95 years. Results: Post-traumatic stress disorder, anxiety, and depression were the most common psychiatric diagnoses in tremor patients, with the odds ratio exceeding 2 in all 15-year cohorts. Depending on age, patients with essential tremor were more likely than those without to have obsessive-compulsive disorder, bipolar illness, schizophrenia, use tobacco and abuse alcohol, have hypertension, obesity, hyperlipidemia, diabetes, vitamin D deficiency, coronary and cerebrovascular diseases, congestive heart failure, stroke, asthma, hypothyroidism, irritable bowel syndrome, renal insufficiency, alcoholic liver disease, hearing loss, glaucoma, macular degeneration, migraine, epilepsy, idiopathic polyneuropathy, history of head trauma, and 'Alzheimer's dementia. In contrast, lung and colorectal cancer, amyotrophic lateral sclerosis, psychostimulant abuse, and rheumatoid arthritis were not more common. Discussion: Post-traumatic stress disorder, anxiety, and depression, strongly associated with essential tremor, are known risk factors for poor health habits, tobacco use and alcohol abuse; collectively these are risk factors for vascular disease, with further negative health consequences for multiple organ systems. As essential tremor is associated with all these conditions, we propose that chronic stress is not only responsible for the conditions associated with tremor but in some cases itself directly and indirectly induces essential tremor, so that tremor and poor health share a common cause.


Assuntos
Tremor Essencial/complicações , Tremor Essencial/epidemiologia , Veteranos , Adulto , Idoso , Idoso de 80 Anos ou mais , Doença Crônica , Estudos de Coortes , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Transtornos do Humor/complicações , Transtornos do Humor/epidemiologia , Transtornos da Personalidade/complicações , Transtornos da Personalidade/epidemiologia , Fatores de Risco , Estresse Psicológico/complicações , Estresse Psicológico/epidemiologia , Transtornos Relacionados ao Uso de Substâncias/complicações , Transtornos Relacionados ao Uso de Substâncias/epidemiologia , Veteranos/psicologia , Adulto Jovem
11.
Cerebellum ; 15(3): 285-98, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-26660708

RESUMO

In this review, we hope to stimulate interest in animal models as opportunities to understand tremor mechanisms within the cerebellar system. We begin by considering the harmaline model of essential tremor (ET), which has ET-like anatomy and pharmacology. Harmaline induces the inferior olive (IO) to burst fire rhythmically, recruiting rhythmic activity in Purkinje cells (PCs) and deep cerebellar nuclei (DCN). This model has fostered the IO hypothesis of ET, which postulates that factors that promote excess IO, and hence PC complex spike synchrony, also promote tremor. In contrast, the PC hypothesis postulates that partial PC cell loss underlies tremor of ET. We describe models in which chronic partial PC loss is associated with tremor, such as the Weaver mouse, and others with PC loss that do not show tremor, such as the Purkinje cell degeneration mouse. We postulate that partial PC loss with tremor is associated with terminal axonal sprouting. We then discuss tremor that occurs with large lesions of the cerebellum in primates. This tremor has variable frequency and is an ataxic tremor not related to ET. Another tremor type that is not likely related to ET is tremor in mice with mutations that cause prolonged synaptic GABA action. This tremor is probably due to mistiming within cerebellar circuitry. In the final section, we catalog tremor models involving neurotransmitter and ion channel perturbations. Some appear to be related to the IO hypothesis of ET, while in others tremor may be ataxic or due to mistiming. In summary, we offer a tentative framework for classifying animal action tremor, such that various models may be considered potentially relevant to ET, subscribing to IO or PC hypotheses, or not likely relevant, as with mistiming or ataxic tremor. Considerable further research is needed to elucidate the mechanisms of tremor in animal models.


Assuntos
Cerebelo/fisiopatologia , Tremor Essencial/fisiopatologia , Animais , Modelos Animais de Doenças , Humanos
12.
Neurology ; 84(10): 1017-25, 2015 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-25663221

RESUMO

OBJECTIVE: To report long-term efficacy and safety results of the SANTE trial investigating deep brain stimulation of the anterior nucleus of the thalamus (ANT) for treatment of localization-related epilepsy. METHODS: This long-term follow-up is a continuation of a previously reported trial of 5- vs 0-V ANT stimulation. Long-term follow-up began 13 months after device implantation with stimulation parameters adjusted at the investigators' discretion. Seizure frequency was determined using daily seizure diaries. RESULTS: The median percent seizure reduction from baseline at 1 year was 41%, and 69% at 5 years. The responder rate (≥50% reduction in seizure frequency) at 1 year was 43%, and 68% at 5 years. In the 5 years of follow-up, 16% of subjects were seizure-free for at least 6 months. There were no reported unanticipated adverse device effects or symptomatic intracranial hemorrhages. The Liverpool Seizure Severity Scale and 31-item Quality of Life in Epilepsy measure showed statistically significant improvement over baseline by 1 year and at 5 years (p < 0.001). CONCLUSION: Long-term follow-up of ANT deep brain stimulation showed sustained efficacy and safety in a treatment-resistant population. CLASSIFICATION OF EVIDENCE: This long-term follow-up provides Class IV evidence that for patients with drug-resistant partial epilepsy, anterior thalamic stimulation is associated with a 69% reduction in seizure frequency and a 34% serious device-related adverse event rate at 5 years.


Assuntos
Núcleos Anteriores do Tálamo/fisiopatologia , Estimulação Encefálica Profunda/efeitos adversos , Epilepsias Parciais/terapia , Adolescente , Adulto , Idoso , Núcleos Anteriores do Tálamo/cirurgia , Estimulação Encefálica Profunda/métodos , Epilepsias Parciais/fisiopatologia , Feminino , Seguimentos , Humanos , Masculino , Pessoa de Meia-Idade , Qualidade de Vida , Índice de Gravidade de Doença , Fatores de Tempo , Resultado do Tratamento , Adulto Jovem
13.
Neurotherapeutics ; 9(3): 635-8, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22454323

RESUMO

Recent work exploring the use of high-molecular weight alcohols to treat essential tremor (ET) has identified octanoic acid as a potential novel tremor-suppressing agent. We used an established harmaline-based mouse model of ET to compare tremor suppression by 1-octanol and octanoic acid. The dose-related effect on digitized motion power within the tremor bandwidth as a fraction of overall motion power was analyzed. Both 1-octanol and octanoic acid provided significant reductions in harmaline tremor. An 8-carbon alkyl alcohol and carboxylic acid each suppress tremor in a pre-clinical mouse model of ET. Further studies are warranted to determine the safety and efficacy of such agents in humans with ET.


Assuntos
Caprilatos/uso terapêutico , Estimulantes do Sistema Nervoso Central/toxicidade , Tremor Essencial/induzido quimicamente , Tremor Essencial/tratamento farmacológico , Harmalina/toxicidade , Animais , Modelos Animais de Doenças , Relação Dose-Resposta a Droga , Masculino , Camundongos , Camundongos Endogâmicos ICR
14.
Artigo em Inglês | MEDLINE | ID: mdl-23440018

RESUMO

BACKGROUND: Harmaline and harmine are tremorigenic ß-carbolines that, on administration to experimental animals, induce an acute postural and kinetic tremor of axial and truncal musculature. This drug-induced action tremor has been proposed as a model of essential tremor. Here we review what is known about harmaline tremor. METHODS: Using the terms harmaline and harmine on PubMed, we searched for papers describing the effects of these ß-carbolines on mammalian tissue, animals, or humans. RESULTS: Investigations over four decades have shown that harmaline induces rhythmic burst-firing activity in the medial and dorsal accessory inferior olivary nuclei that is transmitted via climbing fibers to Purkinje cells and to the deep cerebellar nuclei, then to brainstem and spinal cord motoneurons. The critical structures required for tremor expression are the inferior olive, climbing fibers, and the deep cerebellar nuclei; Purkinje cells are not required. Enhanced synaptic norepinephrine or blockade of ionic glutamate receptors suppresses tremor, whereas enhanced synaptic serotonin exacerbates tremor. Benzodiazepines and muscimol suppress tremor. Alcohol suppresses harmaline tremor but exacerbates harmaline-associated neural damage. Recent investigations on the mechanism of harmaline tremor have focused on the T-type calcium channel. DISCUSSION: Like essential tremor, harmaline tremor involves the cerebellum, and classic medications for essential tremor have been found to suppress harmaline tremor, leading to utilization of the harmaline model for preclinical testing of antitremor drugs. Limitations are that the model is acute, unlike essential tremor, and only approximately half of the drugs reported to suppress harmaline tremor are subsequently found to suppress tremor in clinical trials.

15.
J Neurosci Res ; 89(3): 394-405, 2011 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-21259326

RESUMO

Recently, a variant of insulin-like growth factor-1, mechano-growth factor (MGF), has been discovered whose 24-amino-acid carboxy end is protective in models of stroke, nerve injury, and amyotrophic lateral sclerosis, suggesting broad-spectrum neuroprotective properties. Moreover, we recently demonstrated in vitro and in vivo that a modified protease-resistant 24-amino-acid MGF derivative (MGF24) protects dopaminergic neurons from oxidative stress-induced apoptosis via induction of the stress response protein heme oxygenase-1. However, the underlying mechanism by which MGF24 up-regulates heme oxygenase-1 expression is unknown. In this study, we demonstrate that MGF24-induced heme oxygenase-1 up-regulation is dependent on activation of protein kinase Cϵ and NF-E2-related factor-2 (Nrf2). MGF24 induces nuclear translocation of Nrf2, and siRNA knockdown of Nrf2 or of heme oxygenase-1 prevents MGF24-induced heme oxygenase-1 up-regulation and neuroprotection of SH-SY5Y cells against 6-hydroxydopamine-induced cell death. Pharmacological inhibition of ERK, p38 MAPK, PI3K/Akt, or PKC signaling revealed that only PKC inhibition by GF109203X prevents MGF24's ability to protect against 6-hydroxydopamine-induced cell death. GF109203X also prevented MGF24-induced Nrf2 nuclear translocation and heme oxygenase-1 up-regulation. siRNA knockdown of protein kinase Cϵ blocks MGF24-induced Nfr2 nuclear translocation, heme oxygenase-1 expression, and neuroprotection. Taken together, these results demonstrate that PKC activity is needed for MGF24's activation of Nrf2, which in turn increases heme oxygenase-1 expression, a critical event in mediating MGF24's neuroprotection against 6-hydroxydopamine-induced apoptosis.


Assuntos
Heme Oxigenase-1/metabolismo , Fator de Crescimento Insulin-Like I/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , Proteínas Quinases/metabolismo , Regulação para Cima/fisiologia , Análise de Variância , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Heme Oxigenase-1/genética , Humanos , Fator de Crescimento Insulin-Like I/química , Fator 2 Relacionado a NF-E2/genética , Neuroblastoma , Fármacos Neuroprotetores/farmacologia , Oxidopamina/toxicidade , Fragmentos de Peptídeos/farmacologia , Proteínas Quinases/genética , Transporte Proteico/efeitos dos fármacos , RNA Interferente Pequeno/farmacologia , Transdução de Sinais/efeitos dos fármacos , Simpatolíticos/toxicidade , Transfecção/métodos , Regulação para Cima/efeitos dos fármacos
16.
Eur J Pharmacol ; 659(1): 30-6, 2011 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-21256842

RESUMO

NNC 55-0396 [(1S,2S)-2-(2-(N-[(3-benzimidazol-2-yl)propyl]-N-methylamino)ethyl)-6-fluoro-1,2, 3,4-tetrahydro-1-isopropyl-2-naphtyl cyclopropanecarboxylate dihydrochloride], is a mibefradil derivative that retains potent in vitro T-type calcium channel antagonist efficacy. We compared the two compounds for behavioral toxicity, effects on cytochrome P450 activity, and efficacy against tremor in the γ-aminobutyric acid type A (GABAA) receptor subunit α1-null mouse, and the harmaline tremor model of essential tremor in wild-type mice. NNC 55-0396 was better tolerated than mibefradil in the horizontal wire test of sedation/motor function, with 3/6 failing at 300 and 30mg/kg respectively. To assess for a potential interaction with harmaline, mice were given the drugs, followed by harmaline or vehicle, and tested 30min later in the inverted wire grid test. Mibefradil exacerbated, whereas NNC 55-0396 ameliorated harmaline-induced test deficits. In mouse liver microsomes, NNC 55-0396 was a less potent inhibitor of harmaline O-demethylation than mibefradil (Ki: 0.95 and 0.29µM respectively), and also less potent at inhibiting testosterone 6-ß-hydroxylation (Ki: 0.71 and 0.12µM respectively). In the GABAA α1-null model, NNC 55-0396 but not mibefradil, (each at 20mg/kg), suppressed tremor while NNC 55-0396 at 12.5mg/kg suppressed harmaline-induced tremor by half by 20-100min, whereas mibefradil at the same dose did not significantly affect tremor. In contrast to mibefradil, NNC 55-0396 is well tolerated and suppresses tremor, and exerts less cytochrome P450 inhibition. These results suggest potential clinical utility for NNC 55-0396 or similar derivatives as a T-type calcium antagonist.


Assuntos
Comportamento Animal/efeitos dos fármacos , Benzimidazóis/química , Benzimidazóis/farmacologia , Ciclopropanos/química , Ciclopropanos/farmacologia , Sistema Enzimático do Citocromo P-450/metabolismo , Tremor Essencial/tratamento farmacológico , Mibefradil/química , Mibefradil/farmacologia , Naftalenos/química , Naftalenos/farmacologia , Animais , Benzimidazóis/uso terapêutico , Ciclopropanos/uso terapêutico , Modelos Animais de Doenças , Tremor Essencial/enzimologia , Tremor Essencial/metabolismo , Deleção de Genes , Harmalina/metabolismo , Hidroxilação/efeitos dos fármacos , Metilação/efeitos dos fármacos , Mibefradil/uso terapêutico , Camundongos , Naftalenos/uso terapêutico , Receptores de GABA-A/deficiência , Receptores de GABA-A/genética , Relação Estrutura-Atividade , Testosterona/metabolismo
17.
Clin Neuropharmacol ; 33(5): 223-6, 2010.
Artigo em Inglês | MEDLINE | ID: mdl-20838216

RESUMO

OBJECTIVE: We studied the potential efficacy and tolerance of memantine for essential tremor in an open-treatment trial. METHODS: Participants with upper-limb tremor were titrated to no more than 40 mg/d memantine, as monotherapy or as adjunct to stable antitremor medication, followed by a 12-week extension phase. Tremor was assessed in study 1 with accelerometry and in study 2 by blinded ratings of videotaped Washington Heights Inwood Genetic Essential Tremor (WHIGET) rating scale items. Subjects also rated their tremor treatment response and tremor-associated impairment on the Functional Disabilities scale. RESULTS: In study 1, average accelerometry-measured tremor at last titration visit (average dose, 30.3 mg/d) did not change from baseline, but 2 of 9 subjects, taking 40 mg/d, had greater than 70% accelerometry tremor reduction. In study 2, 13 of 16 provided evaluable data. Average blinded rater-evaluated WHIGET scores were significantly different from baseline scores among those taking 20 mg/d (-12.7%; P < 0.05), but not at last titration visit (-8.4%; average dose, 30.4 mg/d), 40 mg/d (-14.1%), or at end-of-extension visit (-18.2%). Raters judged WHIGET scores as greater than 30% improved in 2 subjects. Unblinded subjects rated Functional Disabilities significantly improved at 30 to 40 but not at 10 to 20 mg/d, and tremor treatment response was positive at all doses. Adverse events were more common at higher doses and included dizziness, somnolence, and poor energy. CONCLUSIONS: These pilot results with small samples indicate that the average effect of memantine on tremor is mild or not significant. However, in a small subset of patients, memantine may confer meaningful tremor benefit.


Assuntos
Dopaminérgicos/uso terapêutico , Tremor Essencial/tratamento farmacológico , Memantina/uso terapêutico , Idoso , Avaliação da Deficiência , Quimioterapia Combinada , Tremor Essencial/fisiopatologia , Feminino , Humanos , Masculino , Projetos Piloto , Índice de Gravidade de Doença , Resultado do Tratamento , Extremidade Superior/fisiopatologia
18.
Neuropharmacology ; 59(6): 380-7, 2010 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-20547167

RESUMO

Essential tremor is a common disorder that lacks molecular targets for therapeutic development. T-type calcium channel activation has been postulated to underlie rhythmicity in the olivo-cerebellar system that is implicated in essential tremor. We therefore tested whether compounds that antagonize T-type calcium channel currents suppress tremor in two mouse models that possess an essential tremor-like pharmacological response profile. Tremor was measured using digitized spectral motion power analysis with harmaline-induced tremor and in the GABA(A) receptor α1 subunit-null model. Mice were given ethosuximide, zonisamide, the neuroactive steroid (3ß,5α,17ß)-17-hydroxyestrane-3-carbonitrile (ECN), the 3,4-dihydroquinazoline derivative KYS05064, the mibefradil derivative NNC 55-0396, or vehicle. In non-sedating doses, each compound reduced harmaline-induced tremor by at least 50% (range of maximal suppression: 53-81%), and in the GABA(A) α1-null model by at least 70% (range 70-93%). Because the T-type calcium channel Cav3.1 is the dominant subtype expressed in the inferior olive, we assessed the tremor response of Cav3.1-deficient mice to harmaline, and found that null and heterozygote mice exhibit as much tremor as wild-type mice. In addition, ECN and NNC 55-0396 suppressed harmaline tremor as well in Cav3.1-null mice as in wild-type mice. The finding that five T-type calcium antagonists suppress tremor in two animal tremor models suggests that T-type calcium channels may be an appropriate target for essential tremor therapy development. It is uncertain whether medications developed to block only the Cav3.1 subtype would exhibit efficacy.


Assuntos
Bloqueadores dos Canais de Cálcio/uso terapêutico , Canais de Cálcio Tipo T/metabolismo , Tremor Essencial/tratamento farmacológico , Análise de Variância , Animais , Benzimidazóis/uso terapêutico , Ciclopropanos/uso terapêutico , Modelos Animais de Doenças , Tremor Essencial/induzido quimicamente , Tremor Essencial/metabolismo , Estranos/uso terapêutico , Etossuximida/uso terapêutico , Harmalina , Isoxazóis/uso terapêutico , Masculino , Camundongos , Camundongos Endogâmicos ICR , Camundongos Knockout , Naftalenos/uso terapêutico , Nitrilas/uso terapêutico , Receptores de GABA-A/metabolismo , Zonisamida
19.
Epilepsia ; 51(5): 899-908, 2010 May.
Artigo em Inglês | MEDLINE | ID: mdl-20331461

RESUMO

PURPOSE: We report a multicenter, double-blind, randomized trial of bilateral stimulation of the anterior nuclei of the thalamus for localization-related epilepsy. METHODS: Participants were adults with medically refractory partial seizures, including secondarily generalized seizures. Half received stimulation and half no stimulation during a 3-month blinded phase; then all received unblinded stimulation. RESULTS: One hundred ten participants were randomized. Baseline monthly median seizure frequency was 19.5. In the last month of the blinded phase the stimulated group had a 29% greater reduction in seizures compared with the control group, as estimated by a generalized estimating equations (GEE) model (p = 0.002). Unadjusted median declines at the end of the blinded phase were 14.5% in the control group and 40.4% in the stimulated group. Complex partial and "most severe" seizures were significantly reduced by stimulation. By 2 years, there was a 56% median percent reduction in seizure frequency; 54% of patients had a seizure reduction of at least 50%, and 14 patients were seizure-free for at least 6 months. Five deaths occurred and none were from implantation or stimulation. No participant had symptomatic hemorrhage or brain infection. Two participants had acute, transient stimulation-associated seizures. Cognition and mood showed no group differences, but participants in the stimulated group were more likely to report depression or memory problems as adverse events. DISCUSSION: Bilateral stimulation of the anterior nuclei of the thalamus reduces seizures. Benefit persisted for 2 years of study. Complication rates were modest. Deep brain stimulation of the anterior thalamus is useful for some people with medically refractory partial and secondarily generalized seizures.


Assuntos
Núcleos Anteriores do Tálamo/fisiologia , Terapia por Estimulação Elétrica/métodos , Epilepsia/terapia , Adulto , Estimulação Encefálica Profunda/efeitos adversos , Estimulação Encefálica Profunda/métodos , Depressão/etiologia , Método Duplo-Cego , Terapia por Estimulação Elétrica/efeitos adversos , Epilepsias Parciais/epidemiologia , Epilepsias Parciais/prevenção & controle , Epilepsias Parciais/terapia , Epilepsia/epidemiologia , Epilepsia/prevenção & controle , Feminino , Seguimentos , Lateralidade Funcional/fisiologia , Humanos , Estudos Longitudinais , Masculino , Transtornos da Memória/epidemiologia , Transtornos da Memória/etiologia , Resultado do Tratamento
20.
Exp Neurol ; 220(2): 255-66, 2009 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-19735655

RESUMO

To assess potential efficacy of mechano growth factor (MGF) for chronic neurodegenerative disorders, we studied whether MGF protects dopamine (DA) neurons subjected to neurotoxic stress. We show that a short 24-amino acid C-terminal peptide of MGF (MGF24) upregulates heme oxygenase-1 (HO-1) expression and protects SH-SY5Y cells against apoptosis and cell loss induced by three DA cell-specific neurotoxins: 6-hydroxydopamine (6-OHDA), 1-methyl-4-phenylpyridinium (MPP(+)), and rotenone. MGF24 maintains the mitochondrial membrane potential and blocks the release of mitochondrial apoptotic-inducing factor into the cytoplasm induced by 6-OHDA, MPP(+), and rotenone. Chemical inhibition of HO-1 with zinc protoporphyrin-IX prevents neuroprotection by MGF24 against the three neurotoxins. MGF24 does not activate Akt signaling nor does Akt inhibition block MGF24 protection of SH-SY5Y cells. In 6-OHDA-lesioned rats, central or peripheral MGF24 administration protects against the development of contralateral forelimb under-utilization, reduces ipsilateral nigral DA cell body loss, and attenuates tyrosine hydroxylase fiber loss in the ipsilateral striatum, independent of IGF-1 receptor activation. Peripheral MGF24 administration upregulates HO-1 expression in striatal and midbrain tissue. This report is the first to demonstrate that a small peptide, MGF24, upregulates HO-1, an important cell defense mediator, and protects DA cells, suggesting new strategies for neuroprotection in Parkinson's disease.


Assuntos
Dopamina/fisiologia , Heme Oxigenase-1/biossíntese , Neurônios/efeitos dos fármacos , Fármacos Neuroprotetores , Fator de Transcrição STAT5/farmacologia , Proteínas Supressoras de Tumor/farmacologia , Animais , Linhagem Celular , Fragmentação do DNA/efeitos dos fármacos , Indução Enzimática/efeitos dos fármacos , Fator de Crescimento Insulin-Like I/metabolismo , Potenciais da Membrana/efeitos dos fármacos , Membranas Mitocondriais/efeitos dos fármacos , Neostriado/efeitos dos fármacos , Neostriado/metabolismo , Neurônios/enzimologia , Oxidopamina/toxicidade , Proteínas Proto-Oncogênicas c-akt/metabolismo , Ratos , Transdução de Sinais/efeitos dos fármacos , Substância Negra/efeitos dos fármacos , Substância Negra/metabolismo , Simpatolíticos/toxicidade , Sais de Tetrazólio , Tiazóis , Regulação para Cima/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...