Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Bacteriol ; 206(2): e0033723, 2024 02 22.
Artigo em Inglês | MEDLINE | ID: mdl-38299858

RESUMO

Genome sequencing has demonstrated that Staphylococcus aureus encodes arginine biosynthetic genes argDCJBFGH synthesizing proteins that mediate arginine biosynthesis using glutamate as a substrate. Paradoxically, however, S. aureus does not grow in a defined, glutamate-replete medium lacking arginine and glucose (CDM-R). Studies from our laboratory have found that specific mutations are selected by S. aureus that facilitate growth in CDM-R. However, these selected mutants synthesize arginine utilizing proline as a substrate rather than glutamate. In this study, we demonstrate that the ectopic expression of the argDCJB operon supports the growth of S. aureus in CDM-R, thus documenting the functionality of this pathway. Furthermore, suppressor mutants of S. aureus JE2 putA::Tn, which is defective in synthesizing arginine from proline, were selected on CDM-R agar. Genome sequencing revealed that these mutants had compensatory mutations within both spoVG, encoding an ortholog of the Bacillus subtilis stage V sporulation protein, and sarA, encoding the staphylococcal accessory regulator. Transcriptional studies document that argD expression is significantly increased when JE2 spoVG sarA was grown in CDM-R. Lastly, we found that a mutation in ahrC was required to induce argD expression in JE2 spoVG sarA when grown in an arginine-replete medium (CDM), suggesting that AhrC also functions to repress argDCJB in an arginine-dependent manner. In conclusion, these data indicate that the argDCJB operon is functional when transcribed in vitro and that SNPs within potential putative regulatory proteins are required to alleviate the repression.IMPORTANCEAlthough Staphylococcus aureus has the capability to synthesize all 20 amino acids, it is phenotypically auxotrophic for several amino acids including arginine. This work identifies putative regulatory proteins, including SpoVG, SarA, and AhrC, that function to inhibit the arginine biosynthetic pathways using glutamate as a substrate. Understanding the ultimate mechanisms of why S. aureus is selected to repress arginine biosynthetic pathways even in the absence of arginine will add to the growing body of work assessing the interactions between metabolism and S. aureus pathogenesis.


Assuntos
Ácido Glutâmico , Staphylococcus aureus , Staphylococcus aureus/metabolismo , Ácido Glutâmico/metabolismo , Arginina/metabolismo , Proteínas de Bactérias/metabolismo , Fatores de Transcrição/metabolismo , Aminoácidos/metabolismo , Prolina/genética , Prolina/metabolismo , Regulação Bacteriana da Expressão Gênica
2.
Sci Transl Med ; 15(693): eade6422, 2023 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-37023209

RESUMO

Respiratory syncytial virus (RSV) is the leading, global cause of serious respiratory disease in infants and is an important cause of respiratory illness in older adults. No RSV vaccine is currently available. The RSV fusion (F) glycoprotein is a key antigen for vaccine development, and its prefusion conformation is the target of the most potent neutralizing antibodies. Here, we describe a computational and experimental strategy for designing immunogens that enhance the conformational stability and immunogenicity of RSV prefusion F. We obtained an optimized vaccine antigen after screening nearly 400 engineered F constructs. Through in vitro and in vivo characterization studies, we identified F constructs that are more stable in the prefusion conformation and elicit ~10-fold higher serum-neutralizing titers in cotton rats than DS-Cav1. The stabilizing mutations of the lead construct (847) were introduced onto F glycoprotein backbones of strains representing the dominant circulating genotypes of the two major RSV subgroups, A and B. Immunization of cotton rats with a bivalent vaccine formulation of these antigens conferred complete protection against RSV challenge, with no evidence of disease enhancement. The resulting bivalent RSV prefusion F investigational vaccine has recently been shown to be efficacious against RSV disease in two pivotal phase 3 efficacy trials, one for passive protection of infants by immunization of pregnant women and the second for active protection of older adults by direct immunization.


Assuntos
Infecções por Vírus Respiratório Sincicial , Vacinas contra Vírus Sincicial Respiratório , Vírus Sincicial Respiratório Humano , Gravidez , Feminino , Humanos , Animais , Anticorpos Antivirais , Anticorpos Neutralizantes , Infecções por Vírus Respiratório Sincicial/prevenção & controle , Vírus Sincicial Respiratório Humano/genética , Glicoproteínas , Sigmodontinae , Proteínas Virais de Fusão/genética
3.
mBio ; 13(3): e0039522, 2022 06 28.
Artigo em Inglês | MEDLINE | ID: mdl-35475645

RESUMO

Previous studies have found that arginine biosynthesis in Staphylococcus aureus is repressed via carbon catabolite repression (CcpA), and proline is used as a precursor. Unexpectedly, however, robust growth of S. aureus is not observed in complete defined medium lacking both glucose and arginine (CDM-R). Mutants able to grow on agar-containing defined medium lacking arginine (CDM-R) were selected and found to contain mutations within ahrC, encoding the canonical arginine biosynthesis pathway repressor (AhrC), or single nucleotide polymorphisms (SNPs) upstream of the native arginine deiminase (ADI) operon arcA1B1D1C1. Reverse transcription-PCR (RT-PCR) studies found that mutations within ccpA or ahrC or SNPs identified upstream of arcA1B1D1C1 increased the transcription of both arcB1 and argGH, encoding ornithine carbamoyltransferase and argininosuccinate synthase/lyase, respectively, facilitating arginine biosynthesis. Furthermore, mutations within the AhrC homologue argR2 facilitated robust growth within CDM-R. Complementation with arcB1 or arcA1B1D1C1, but not argGH, rescued growth in CDM-R. Finally, supplementation of CDM-R with ornithine stimulated growth, as did mutations in genes (proC and rocA) that presumably increased the pyrroline-5-carboxylate and ornithine pools. Collectively, these data suggest that the transcriptional regulation of ornithine carbamoyltransferase and, in addition, the availability of intracellular ornithine pools regulate arginine biosynthesis in S. aureus in the absence of glucose. Surprisingly, ~50% of clinical S. aureus isolates were able to grow in CDM-R. These data suggest that S. aureus is selected to repress arginine biosynthesis in environments with or without glucose; however, mutants may be readily selected that facilitate arginine biosynthesis and growth in specific environments lacking arginine. IMPORTANCE Staphylococcus aureus can cause infection in virtually any niche of the human host, suggesting that it has significant metabolic versatility. Indeed, bioinformatic analysis suggests that it has the biosynthetic capability to synthesize all 20 amino acids. Paradoxically, however, it is conditionally auxotrophic for several amino acids, including arginine. Studies in our laboratory are designed to assess the biological function of amino acid auxotrophy in this significant pathogen. This study reveals that the metabolic block repressing arginine biosynthesis in media lacking glucose is the transcriptional repression of ornithine carbamoyltransferase encoded by arcB1 within the native arginine deiminase operon in addition to limited intracellular pools of ornithine. Surprisingly, approximately 50% of S. aureus clinical isolates can grow in media lacking arginine, suggesting that mutations are selected in S. aureus that allow growth in particular niches of the human host.


Assuntos
Ornitina Carbamoiltransferase , Staphylococcus aureus , Aminoácidos/metabolismo , Arginina/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Glucose/metabolismo , Ornitina/metabolismo , Ornitina Carbamoiltransferase/genética , Ornitina Carbamoiltransferase/metabolismo , Staphylococcus aureus/enzimologia , Staphylococcus aureus/genética
4.
J Infect Dis ; 220(1): 105-115, 2019 06 05.
Artigo em Inglês | MEDLINE | ID: mdl-30778554

RESUMO

BACKGROUND: Group B streptococcus (GBS) causes serious diseases in newborn infants, often resulting in lifelong neurologic impairments or death. Prophylactic vaccination of pregnant women prior to delivery could provide comprehensive protection, as early onset and late-onset disease and maternal complications potentially could be addressed. METHODS: Capsular polysaccharide conjugate vaccine GBS6 was designed using surveillance data yielded by whole-genome sequencing of a global collection of recently recovered GBS isolates responsible for invasive neonatal GBS disease. Capsular polysaccharides were isolated, oxidized using sodium periodate, and conjugated to CRM197 by reductive amination in dimethyl sulfoxide. Immune responses in mice and rhesus macaques were measured in a multiplex Luminex immunoglobulin G (IgG) assay and opsonophagocytic activity assays. RESULTS: The optimized conjugates were immunogenic, alone and in combination, in mice and rhesus macaques, inducing IgG antibodies that mediated opsonophagocytic killing. Active immunization of murine dams with GBS6 prior to mating resulted in serotype-specific protection of pups from a lethal challenge with GBS. Protection following passive administration of serotype-specific IgG monoclonal antibodies to dams demonstrated conclusively that anticapsular polysaccharide IgG alone is sufficient for protection. CONCLUSIONS: The findings support the ongoing clinical evaluation of maternal GBS6 vaccination as a potential alternative method to prevent GBS disease in infants.


Assuntos
Animais Recém-Nascidos/imunologia , Imunidade Materno-Adquirida/imunologia , Polissacarídeos Bacterianos/imunologia , Infecções Estreptocócicas/imunologia , Vacinas Estreptocócicas/imunologia , Streptococcus/imunologia , Vacinas Conjugadas/imunologia , Animais , Animais Recém-Nascidos/microbiologia , Anticorpos Antibacterianos/imunologia , Feminino , Imunização/métodos , Imunoglobulina G/imunologia , Macaca mulatta/imunologia , Macaca mulatta/microbiologia , Camundongos , Sorogrupo , Infecções Estreptocócicas/microbiologia , Vacinação/métodos
5.
mSphere ; 3(4)2018 07 18.
Artigo em Inglês | MEDLINE | ID: mdl-30021878

RESUMO

Staphylococcus aureus is a human pathogen that has developed several approaches to evade the immune system, including a strategy to resist oxidative killing by phagocytes. This resistance is mediated by production of superoxide dismutase (SOD) enzymes which use manganese as a cofactor. S. aureus encodes two manganese ion transporters, MntABC and MntH, and a possible Nramp family manganese transporter, exemplified by S. aureus N315 SA1432. Their relative contributions to manganese transport have not been well defined in clinically relevant isolates. For this purpose, insertional inactivation mutations were introduced into mntC, mntH, and SA1432 individually and in combination. mntC was necessary for full resistance to methyl viologen, a compound that generates intracellular free radicals. In contrast, strains with an intact mntH gene had a minimal increase in resistance that was revealed only in mntC strains, and no change was observed upon mutation of SA1432 in strains lacking both mntC and mntH Similarly, MntC alone was required for high cellular SOD activity. In addition, mntC strains were attenuated in a murine sepsis model. To further link these observations to manganese transport, an S. aureus MntC protein lacking manganese binding activity was designed, expressed, and purified. While circular dichroism experiments demonstrated that the secondary and tertiary structures of this protein were unaltered, a defect in manganese binding was confirmed by isothermal titration calorimetry. Unlike complementation with wild-type mntC, introduction of the manganese-binding defective allele into the chromosome of an mntC strain did not restore resistance to oxidative stress or virulence. Collectively, these results underscore the importance of MntC-dependent manganese transport in S. aureus oxidative stress resistance and virulence.IMPORTANCE Work outlined in this report demonstrated that MntC-dependent manganese transport is required for S. aureus virulence. These study results support the model that MntC-specific antibodies elicited by a vaccine have the potential to disrupt S. aureus manganese transport and thus abrogate to its virulence.


Assuntos
Proteínas de Bactérias/metabolismo , Manganês/metabolismo , Proteínas de Membrana Transportadoras/metabolismo , Estresse Oxidativo , Staphylococcus aureus/enzimologia , Estresse Fisiológico , Fatores de Virulência/metabolismo , Animais , Proteínas de Bactérias/genética , Modelos Animais de Doenças , Técnicas de Inativação de Genes , Proteínas de Membrana Transportadoras/genética , Camundongos , Mutagênese Insercional , Infecções Estafilocócicas/microbiologia , Infecções Estafilocócicas/patologia , Staphylococcus aureus/genética , Staphylococcus aureus/patogenicidade , Virulência , Fatores de Virulência/genética
6.
PLoS Pathog ; 12(9): e1005908, 2016 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-27689696

RESUMO

The Staphylococcus aureus manganese transporter protein MntC is under investigation as a component of a prophylactic S.aureus vaccine. Passive immunization with monoclonal antibodies mAB 305-78-7 and mAB 305-101-8 produced using MntC was shown to significantly reduce S. aureus burden in an infant rat model of infection. Earlier interference mapping suggested that a total of 23 monoclonal antibodies generated against MntC could be subdivided into three interference groups, representing three independent immunogenic regions. In the current work binding epitopes for selected representatives of each of these interference groups (mAB 305-72-5 - group 1, mAB 305-78-7 - group 2, and mAB 305-101-8 - group 3) were mapped using Hydrogen-Deuterium Exchange Mass Spectrometry (DXMS). All of the identified epitopes are discontinuous, with binding surface formed by structural elements that are separated within the primary sequence of the protein but adjacent in the context of the three-dimensional structure. The approach was validated by co-crystallizing the Fab fragment of one of the antibodies (mAB 305-78-7) with MntC and solving the three-dimensional structure of the complex. X-ray results themselves and localization of the mAB 305-78-7 epitope were further validated using antibody binding experiments with MntC variants containing substitutions of key amino acid residues. These results provided insight into the antigenic properties of MntC and how these properties may play a role in protecting the hostagainst S. aureus infection by preventing the capture and transport of Mn2+, a key element that the pathogen uses to evade host immunity.

7.
PLoS One ; 8(10): e77874, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24205007

RESUMO

Staphylococcus aureus is a successful human pathogen that has developed several approaches to evade the immune system, including resistance strategies to prevent oxidative killing by immune cells. One mechanism by which this evasion occurs is by production of superoxide dismutase enzymes, which require manganese as a cofactor. Manganese is acquired by the manganese transporter MntABC. One component of this operon, MntC, has been proposed as a potential vaccine candidate due to its early in vivo expression and its ability to provide protection in preclinical models of staphylococcal infection. In the current study, we interrogate the role of this protein in protecting S. aureus from oxidative stress. We demonstrate that mutation of mntC in a number of invasive S. aureus clinical isolates results in increased sensitivity to oxidative stress. In addition, we show that while downregulation of mntC transcription is triggered upon exposure to physiological concentrations of manganese, MntC protein is still present on the bacterial surface at these same concentrations. Taken together, these results provide insight into the role of this antigen for the pathogen.


Assuntos
Transportadores de Cassetes de Ligação de ATP/metabolismo , Proteínas de Bactérias/metabolismo , Regulação Bacteriana da Expressão Gênica , Manganês/metabolismo , Estresse Oxidativo , Infecções Estafilocócicas/metabolismo , Transportadores de Cassetes de Ligação de ATP/genética , Proteínas de Bactérias/genética , Membrana Celular/metabolismo , Humanos , Mutação/genética , Infecções Estafilocócicas/microbiologia , Staphylococcus aureus/genética , Staphylococcus aureus/crescimento & desenvolvimento , Staphylococcus aureus/isolamento & purificação
8.
J Bacteriol ; 191(22): 6865-76, 2009 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-19749041

RESUMO

Bacillus subtilis CodY protein is a DNA-binding global transcriptional regulator that responds to branched-chain amino acids (isoleucine, leucine, and valine) and GTP. Crystal structure studies have shown that the N-terminal region of the protein includes a GAF domain that contains a hydrophobic pocket within which isoleucine and valine bind. This region is well conserved in CodY homologs. Site-directed mutagenesis was employed to understand the roles of some of the residues in the GAF domain and hydrophobic pocket in interaction with isoleucine and GTP. The F40A, F71E, and F98A forms of CodY were inactive in vivo. They were activatable by GTP but to a much lesser extent by branched-chain amino acids in vitro. The CodY mutant R61A retained partial repression of target promoters in vivo and was able to respond to GTP in vitro but also responded poorly to branched-chain amino acids in vitro unless GTP was simultaneously present. Thus, the GAF domain includes residues essential for full activation of CodY by branched-chain amino acids, but these residues are not critical for activation by GTP. Binding studies with branched-chain amino acids and their analogs revealed that an amino group at position 2 and a methyl group at position 3 of valine are critical components of the recognition of the amino acids by CodY.


Assuntos
Aminoácidos de Cadeia Ramificada/metabolismo , Bacillus subtilis/metabolismo , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Aminoácidos de Cadeia Ramificada/química , Bacillus subtilis/genética , Proteínas de Bactérias/genética , Cristalografia por Raios X , Pegada de DNA , Guanosina Trifosfato/química , Guanosina Trifosfato/metabolismo , Isoleucina/química , Isoleucina/metabolismo , Estrutura Molecular , Mutagênese Sítio-Dirigida , Regiões Promotoras Genéticas/genética , Ligação Proteica/genética , Ligação Proteica/fisiologia , Estrutura Secundária de Proteína
9.
J Bacteriol ; 190(3): 798-806, 2008 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-17993518

RESUMO

Many of the adaptive mechanisms that allow Bacillus subtilis to adjust to changes in nutrient availability are controlled by CodY. Binding of CodY to its target genes is stimulated by interaction with its effectors, GTP and the branched-chain amino acids (BCAAs). Upon nutrient limitation, intracellular pools of these effectors are depleted and CodY can no longer repress genes required for adaptation. In vitro studies reported here explored in more detail the interaction of CodY with GTP. DNase I footprinting experiments indicated that CodY has an affinity for GTP in the millimolar range. Further, CodY was shown to interact specifically with GTP and dGTP; no other naturally occurring nucleotides that were tested, including ppGpp and pppGpp, resulted in DNA protection. Two nonhydrolyzable analogs of GTP were fully able to activate CodY binding to target DNA, demonstrating that GTP hydrolysis is not necessary for CodY-dependent regulation. GTP and the BCAAs were shown to act additively to increase the affinity of CodY for DNA; increased protection was observed in DNase I footprinting experiments when both effectors were present, compared to either effector alone, and in in vitro transcription reactions, transcriptional repression by CodY was stronger in the presence of both GTP and BCAAs than of BCAAs alone. Thus, interaction of CodY with GTP is specific and results in increased affinity for its target genes. This increase in affinity is independent of GTP hydrolysis and is augmented in the presence of BCAAs.


Assuntos
Bacillus subtilis/metabolismo , Proteínas de Bactérias/metabolismo , Proteínas de Ligação a DNA/metabolismo , Regulação Bacteriana da Expressão Gênica , Guanosina Trifosfato/metabolismo , Proteínas Repressoras/metabolismo , Adaptação Fisiológica , Aminoácidos de Cadeia Ramificada/metabolismo , Bacillus subtilis/genética , Bacillus subtilis/fisiologia , Proteínas de Bactérias/genética , Meios de Cultura , Pegada de DNA , Proteínas de Ligação a DNA/genética , Proteínas Repressoras/genética
10.
Infect Control Hosp Epidemiol ; 24(2): 142-4, 2003 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-12602700

RESUMO

Monsel's solution is a common topically applied hemostatic agent used in minor dermatologic and gynecologic surgery. Clinically, because it is often stored for long periods and dispensed from a common source for multiple patients, Monsel's solution is a potential vector for transmission of infection. However, microbiologic inoculation studies and contamination surveys indicate that Monsel's solution has properties that prohibit microbial growth, making it an unlikely vector for nosocomial infection.


Assuntos
Infecções Bacterianas/transmissão , Contagem de Colônia Microbiana , Infecção Hospitalar/microbiologia , Contaminação de Medicamentos , Armazenamento de Medicamentos/normas , Compostos Férricos/análise , Hemostáticos/análise , Controle de Infecções/normas , Sulfatos/análise , Infecções Bacterianas/etiologia , Infecções Bacterianas/microbiologia , Infecção Hospitalar/etiologia , Armazenamento de Medicamentos/métodos , Compostos Férricos/efeitos adversos , Hemostáticos/efeitos adversos , Humanos , Risco , Sulfatos/efeitos adversos , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...