Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Materials (Basel) ; 17(11)2024 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-38893946

RESUMO

Thermal transport is of grave importance in many high-value applications. Heat dissipation can be improved by utilizing liquid metals as thermal interface materials. Yet, liquid metals exhibit corrosivity towards many metals used for heat sinks, such as aluminum, and other electrical devices (i.e., copper). The compatibility of the liquid metal with the heat sink or device material as well as its long-term stability are important performance variables for thermal management systems. Herein, the compatibility of the liquid metal Galinstan, a eutectic alloy of gallium, indium, and tin, with diamond coatings and the stability of the liquid metal in this environment are scrutinized. The liquid metal did not penetrate the diamond coating nor corrode it. However, the liquid metal solidified with the progression of time, starting from the second year. After 4 years of aging, the liquid metal on all samples solidified, which cannot be explained by the dissolution of aluminum from the titanium alloy. In contrast, the solidification arose from oxidation by oxygen, followed by hydrolysis to GaOOH due to the humidity in the air. The hydrolysis led to dealloying, where In and Sn remained an alloy while Ga separated as GaOOH. This hydrolysis has implications for many devices based on gallium alloys and should be considered during the design phase of liquid metal-enabled products.

2.
J Colloid Interface Sci ; 652(Pt B): 1512-1521, 2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-37660608

RESUMO

Long-term exposition of electrodes to aqueous media inevitably results in biofouling and adhesion of bacteria, reducing the electrolysis efficiency of electrodes for water treatment. To ensure technically efficient antifouling of materials for durable electrodes, hierarchical micro-/nano structured boron-doped diamond (BDD) electrodes were designed and synthesized. Multi-level structured BDD was coated on titanium mesh by a bottom-up strategy, based on a combination of self-assembly seeding and hot filament chemical vapor deposition (HFCVD) growth. The morphology of the BDD coating can be controlled by manipulating the seeding density and boron doping concentration. The designed micro/nano hierarchical structure of the BDD electrode suppressed bacterial adhesion greatly and exhibited excellent anti-biofouling efficiency with an antibacterial rate of âˆ¼ 93 %, which entails simplified self-cleaning and durable BDD-coated electrodes. The BDD-coated electrodes were employed to electrochemically treat Escherichia coli-contaminated water, killing virtually all bacteria (≥99.9 %) in 1 min. Finally, real river water was electrochemically treated, reducing the chemical oxygen demand (COD) down to 5 mg/L in 4 h. The excellent performance shows the great potential of the structured BDD electrodes for long-term water purification.

3.
Soft Matter ; 19(24): 4536-4548, 2023 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-37306255

RESUMO

Pickering emulgels stabilized by graphene oxide (GO) with didodecyldimethylammonium bromide (DDAB) as an auxiliary surfactant and liquid paraffin as the oil phase have proved to be an excellent 3D printable ink. This paper elucidates the structure of such emulgels by a combination of microscopy before and after intensive shear as well as broadband dielectric spectroscopy and rheology in the linear and nonlinear regime. An increase of the DDAB surfactant and GO-contents leads to a systematic increase of modulus and viscosity, a reduction of the limits of the nonlinear regime and a more complicated variation of the normal forces, with negative normal forces at high shear rate  for low GO-contents and positive normal forces at high GO-contents. The interfacial jamming behavior studied by morphology, rheology and dielectric spectroscopy is explained based on droplet deformation, jamming and recovery phenomena.

4.
Molecules ; 28(12)2023 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-37375423

RESUMO

This study investigates the rheological properties of dual-network hydrogels based on acrylamide and sodium alginate under large deformations. The concentration of calcium ions affects the nonlinear behavior, and all gel samples exhibit strain hardening, shear thickening, and shear densification. The paper focuses on systematic variation of the alginate concentration-which serves as second network building blocks-and the Ca2+-concentration-which shows how strongly they are connected. The precursor solutions show a typical viscoelastic solution behavior depending on alginate content and pH. The gels are highly elastic solids with only relatively small viscoelastic components, i.e., their creep and creep recovery behavior are indicative of the solid state after only a very short time while the linear viscoelastic phase angles are very small. The onset of the nonlinear regime decreases significantly when closing the second network (alginate) upon adding Ca2+, while at the same time the nonlinearity parameters (Q0, I3/I1, S, T, e3/e1, and v3/v1) increase significantly. Further, the tensile properties are significantly improved by closing the alginate network by Ca2+ at intermediate concentrations.

5.
ACS Nano ; 17(1): 27-50, 2023 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-36534488

RESUMO

Untethered miniature robots enable targeted delivery and therapy deep inside the gastrointestinal tract in a minimally invasive manner. By combining actuation systems and imaging tools, significant progress has been made toward the development of functional microrobots. These robots can be actuated by external fields and fuels while featuring real-time tracking feedback toward certain regions and can perform the therapeutic process by rational exertion of the local environment of the gastrointestinal tract (e.g., pH, enzyme). Compared with conventional surgical tools, such as endoscopic devices and catheters, miniature robots feature minimally invasive diagnosis and treatment, multifunctionality, high safety and adaptivity, embodied intelligence, and easy access to tortuous and narrow lumens. In addition, the active motion of microrobots enhances local penetration and retention of drugs in tissues compared to common passive oral drug delivery. Based on the dissimilar microenvironments in the various sections of the gastrointestinal tract, this review introduces the advances of miniature robots for minimally invasive targeted delivery and therapy of diseases along the gastrointestinal tract. The imaging modalities for the tracking and their application scenarios are also discussed. We finally evaluate the challenges and barriers that retard their applications and hint on future research directions in this field.


Assuntos
Robótica , Sistemas de Liberação de Medicamentos/métodos , Sistema Digestório
6.
Adv Mater ; 35(18): e2205732, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36113864

RESUMO

Small-scale robots (SSRs) have emerged as promising and versatile tools in various biomedical, sensing, decontamination, and manipulation applications, as they are uniquely capable of performing tasks at small length scales. With the miniaturization of robots from the macroscale to millimeter-, micrometer-, and nanometer-scales, the viscous and surface forces, namely adhesive forces and surface tension have become dominant. These forces significantly impact motion efficiency. Surface engineering of robots with both hydrophilic and hydrophobic functionalization presents a brand-new pathway to overcome motion resistance and enhance the ability to target and regulate robots for various tasks. This review focuses on the current progress and future perspectives of SSRs with hydrophilic and hydrophobic modifications (including both tethered and untethered robots). The study emphasizes the distinct advantages of SSRs, such as improved maneuverability and reduced drag forces, and outlines their potential applications. With continued innovation, rational surface engineering is expected to endow SSRs with exceptional mobility and functionality, which can broaden their applications, enhance their penetration depth, reduce surface fouling, and inhibit bacterial adhesion.

7.
Materials (Basel) ; 15(23)2022 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-36499785

RESUMO

The dispersibility of flexible polymer chains present at the emulsion's interface between the dispersed and continuous phase has obvious effects on rheology and dielectric properties of the whole emulsion. Cellulose nanofiber (CNF)-based Pickering emulsions are good systems to research these properties with respect to their microscopic phase structure, dielectric, and rheological properties by using CNF as a water-dispersible Pickering emulsifier, liquid paraffin as an oil phase, and didodecyldimethylammonium bromide (DDAB) as a cationic auxiliary surfactant. The CNF and DDAB contents were systematically varied while the water-to-paraffin oil ratio was kept constant to discern the influence of the Pickering emulsifiers. Polarized optical microscopic images reveal that the droplets tend to shrink at higher CNF content but grow bigger when increasing the DDAB content, which is proved by fluorescence analysis of the CNF dispersibility with varying DDAB content. The dielectric damping exhibits a minimum, whose value decreases with increasing DDAB and CNF content. Increasing the DDAB content promotes the solubilization of CNF in the aqueous phase, which will increase the overall viscosity and yield points. Similarly, a higher CNF content leads to a higher viscosity and yield point, but at high DDAB contents, the viscosity function exhibits an S-shape at intermediate CNF contents. To evaluate the results further, they were compared with CNF dispersions (without oil phase), which showed a surfactant effect slightly on maximum stress but strongly on yield stress τy, indicating that DDAB can promote the formation of a CNF network rather than the viscosity of the whole system. This paper provides information on how a systematical variation of the composition influences morphology and physico-chemical interactions as detected by broadband dielectric spectroscopy and rheological behavior.

8.
Langmuir ; 38(47): 14475-14484, 2022 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-36383709

RESUMO

Gallium-based liquid metals form alloys with a melting point close to or below room temperature. On the surface of these liquid metals, a thin oxide skin is formed once in contact with oxygen, and this oxide skin can be leveraged to stabilize liquid metal micro- and nanodroplets in a liquid. During sonication and storage of these droplets in aqueous solution, gallium oxide hydroxide (GaOOH) forms on these droplets, and given enough time or treatment with heat, a full shape transition and dealloying are observed. In this article, we show that GaOOH can be grown at room temperature and that the growth is dependent on both the local environment and temperature. GaOOH growth on liquid metal microdroplets located at the air/water interface is considerably faster than in the bulk phase. Interestingly, hydrolysis to GaOOH is hampered and stops at 15 °C in bulk water after 6 h. In contrast, hydrolysis commences even at 15 °C for liquid metal microdroplets located at the air/water interface, and full surface coverage is obtained after around 24 h (compared to 12 h at 25 °C at the air/water interface). The X-ray photoelectron spectroscopy (XPS) measurement suggests that gallium oxide is dissolved and Ga(OH)3 is formed as a precursor that reacts in a downstream reaction toward GaOOH. This improved understanding of the GaOOH formation can be leveraged to control the liquid metal micro- and nanodroplet shape and composition (i.e., for biomedical applications).

9.
ACS Appl Mater Interfaces ; 14(37): 42744-42756, 2022 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-36068651

RESUMO

Adhesion and spreading of liquid metals (LMs) on substrates are essential steps for the generation of flexible electronics and thermal management devices. However, the controlled deposition is limited by the high surface tension and peculiar wetting and adhesion behavior of LMs. Herein, we introduce gelatin-regulated LM droplet deposition and sintering (GLMDDS), for the upscalable production of conformally adhesive, solidlike, yet transient LM thin films and patterns on diverse substrates. This method involves four steps: homogeneous deposition of LM microdroplets, gelation of the LM-gelatin solution, toughening of the gelatin hydrogel by solvent displacement, and peeling-induced sintering of LM microdroplets. The LM thin film exhibits a three-layer structure, comprising an LM microdroplet-embedded tough organohydrogel adhesion layer, a continuous LM layer, and an oxide skin. The composite exhibits high stretchability and mechanical robustness, conformal adhesion to various substrates, high conductivity (4.35 × 105 S·m-1), and transience (86% LM recycled). Large-scale deposition (i.e., 5.6 dm2) and the potential for patterns on diverse substrates demonstrate its upscalability and broad suitability. Finally, the LM thin films and patterns are applied for flexible and wearable devices, i.e., pressure sensors, heaters, human motion tracking devices, and thermal management devices, illustrating the broad applicability of this strategy.

10.
Polymers (Basel) ; 14(11)2022 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-35683935

RESUMO

Liquid metal (LM)-polymer composites that combine the thermal and electrical conductivity of LMs with the shape-morphing capability of polymers are attracting a great deal of attention in the fields of reconfigurable electronics and soft robotics. However, investigation of the synergetic effect between the shape-changing properties of LMs and polymer matrices is lacking. Herein, a self-healable and recyclable dual-shape memory composite, comprising an LM (gallium) and a Diels-Alder (DA) crosslinked crystalline polyurethane (PU) elastomer, is reported. The composite exhibits a bilayer structure and achieves excellent shape programming abilities, due to the phase transitions of the LM and the crystalline PU elastomers. To demonstrate these shape-morphing abilities, a heat-triggered soft gripper, which can grasp and release objects according to the environmental temperature, is designed and built. Similarly, combining the electrical conductivity and the dual-shape memory effect of the composite, a light-controlled reconfigurable switch for a circuit is produced. In addition, due to the reversible nature of DA bonds, the composite is self-healable and recyclable. Both the LM and PU elastomer are recyclable, demonstrating the extremely high recycling efficiency (up to 96.7%) of the LM, as well as similar mechanical properties between the reprocessed elastomers and the pristine ones.

11.
Gels ; 8(6)2022 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-35735675

RESUMO

Artificial shape-morphing hydrogels are emerging toward various applications, spanning from electronic skins to healthcare. However, the low freezing and drying tolerance of hydrogels hinder their practical applications in challenging environments, such as subzero temperatures and arid conditions. Herein, we report on a shape-morphing system of tough organohydrogels enabled by the spatially encoded rigid structures and its applications in conformal packaging of "island-bridge" stretchable electronics. To validate this method, programmable shape morphing of Fe (III) ion-stiffened Ca-alginate/polyacrylamide (PAAm) tough organohydrogels down to -50 °C, with long-term preservation of their 3D shapes at arid or even vacuum conditions, was successfully demonstrated, respectively. To further illustrate the potency of this approach, the as-made organohydrogels were employed as a material for the conformal packaging of non-stretchable rigid electronic components and highly stretchable liquid metal (galinstan) conductors, forming a so-called "island-bridge" stretchable circuit. The conformal packaging well addresses the mechanical mismatch between components with different elastic moduli. As such, the as-made stretchable shape-morphing device exhibits a remarkably high mechanical durability that can withstand strains as high as 1000% and possesses long-term stability required for applications under challenging conditions.

12.
Mater Horiz ; 8(2): 351-369, 2021 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-34821259

RESUMO

As one of the most outstanding materials, the analysis of the structure and function of hydrogels has been extensively carried out to tailor and adapt them to various fields of application. The high water content, which is beneficial for plenty of applications in the biomedical setting, prevents the adoption of hydrogels in flexible electronics and sensors in real life applications, because hydrogels lose their excellent properties, including conductivity, transparency, flexibility, etc., upon freezing at sub-zero temperatures. Therefore, depressing the liquid-solid phase transition temperature is a powerful means to expand the application scope of hydrogels, and will benefit the chemical engineering and materials science communities. This review summarizes the recent research progress of anti-freezing hydrogels. At first, approaches for the generation of anti-freezing (hydro)gels are introduced and their anti-freezing mechanisms and performances are briefly discussed. These approaches are either based on addition of salts, alcohols (cryoprotectants and organohydrogels), and ionic liquids (ionogels), modification of the polymer network or a combination of several techniques. Then, a concise overview of applications leveraged by the widened temperature resistance is provided and future research areas and developments are envisaged.


Assuntos
Hidrogéis , Líquidos Iônicos , Biomimética , Condutividade Elétrica , Polímeros
13.
Langmuir ; 37(30): 9017-9025, 2021 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-34281345

RESUMO

Gallium-based alloys have garnered considerable attention in the scientific community, particularly as they are in an atypical liquid state at and near room temperature. Though physical parameters, such as thermal conductivity, electrical conductivity, viscosity, yield stress, and surface tension, of these alloys are broadly known, the surface tension (surface free energy) of the oxide skin remains intangible due to the high yield stress of the oxide skin. In this article, we propose to employ gradually attenuated vibrations to obtain equilibrium shapes, which are analyzed along the lines of the puddle height method. The surface tension of the oxide skin was determined on quartz glass and liquid metal-phobic diamond coating to be around 350-365 mN/m, thus independent of the substrate surface or employed liquid metal (i.e., eutectic Ga-In (EGaIn) and galinstan). The similarity of the surface tension for different alloys was ascribed to the composition of the oxide skin, which predominantly comprises gallium oxides due to thermodynamic constraints. We envision that this method can also be applied to other liquid metal alloys and liquid metal marble systems facilitating modeling, simulation, and optimization processes.

14.
Small ; 17(30): e2007529, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34041849

RESUMO

Diamond is a highly attractive material for ample applications in material science, engineering, chemistry, and biology because of its favorable properties. The advent of conductive diamond coatings and the steady demand for miniaturization in a plethora of economic and scientific fields resulted in the impetus for interdisciplinary research to develop intricate deposition techniques for thin (≤1000 nm) and ultra-thin (≤100 nm) diamond films on non-diamond substrates. By virtue of the lowered thickness, diamond coatings feature high optical transparency in UV-IR range. Combined with their semi-conductivity and mechanical robustness, they are promising candidates for solar cells, optical devices, transparent electrodes, and photochemical applications. In this review, the difficulty of (ultra-thin) diamond film development and production, introduction of important stepping stones for thin diamond synthesis, and summarization of the main nucleation procedures for diamond film synthesis are elucidated. Thereafter, applications of thin diamond coatings are highlighted with a focus on applications relying on ultrathin diamond coatings, and the excellent properties of the diamond exploited in said applications are discussed, thus guiding the reader and enabling the reader to quickly get acquainted with the research field of ultrathin diamond coatings.


Assuntos
Diamante , Eletrodos
15.
ACS Appl Mater Interfaces ; 12(49): 55501-55509, 2020 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-33217233

RESUMO

Icing of water (moisture) at subzero temperatures with different length scales is harmful to a variety of applications spanning from large-scale aircraft to small camera lens. Existing strategies relying on controlling the surface structure and material are encumbered with shortcomings of short frost delay time, poor durability, and difficulty in large-scale production. Inspired from the mucus secretion of mollusks, we introduce organohydrogel dynamic interfaces that can perform dynamic and reversible exchange of the cryoprotectant and water at the interface, resulting in exceptional antifrosting, antiadhesion, and deicing properties with long-term durability. The replenishable coating shows superlubrication to the surface ice with a sliding angle up to 1.9 ± 0.4o and a frost delay time up to 970 ± 31 min in the presence of water spray (99% relative humidity) at subzero temperatures. The strategy offers a reliable and scalable solution to prevent engineering surfaces, i.e., aircraft, pavement, bridge, and other public facilities, from icing/frosting and ice adhesion, even under extreme cold environments.

16.
ACS Appl Mater Interfaces ; 12(36): 40891-40900, 2020 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-32805806

RESUMO

Gallium-based liquid metals (GLMs) exist as atypical liquid-phase metals at and near room temperature while being electrically and thermally conductive, enabling copious applications in soft electronics and thermal management systems. Yet, solid metals are affected by interfacing with GLMs, resulting in liquid metal embrittlement and device failure. To avert this issue, mechanically durable and electrically tunable diffusion barriers for long-term reliable liquid metal-solid metal interfacing based on the deposition of various diamond coatings are designed and synthesized, as they feature high chemical inertness and extraordinary mechanical resistance. The diamond coatings show superlyophobicity (GLM contact angle ≥ 155°) and are nonstick toward GLMs, thereby achieving high mobility of GLM droplets (sliding angle 8-12°). The excellent barrier and anti-adhesion performance of the diamond coatings are proven in long-term experiments (3 weeks) of coated titanium alloy (Ti) samples in contact with GLMs. The electrical performance of the conductive diamond coating deposited on Ti is reliable and stable over a period of 50 h. As proof-of-concept applications a switch and a thermal management device based on liquid metals are demonstrated, signifying that coating diamond films on metals is a potent means to achieve stable integration of solid metals with GLMs.

17.
Macromol Biosci ; 20(6): e2000014, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32363777

RESUMO

Here, the formation of giant enzyme-degradable polymersomes using the electroformation method is reported. Poly(ethylene glycol)-block-poly(ε-caprolactone) polymersomes have been shown previously to be attractive candidates for the detection of bacterial proteases and protease mediated release of encapsulated reporter dyes and antimicrobials. To maximize the efficiency, the maximization of block copolymer (BCP) vesicle size without compromising their properties is of prime importance. Thus, the physical-chemical properties of the BCP necessary to self-assemble into polymeric vesicles by electroformation are first identified. Subsequently, the morphology of the self-assembled structures is extensively characterized by different microscopy techniques. The vesicular structures are visualized for giant polymersomes by confocal laser scanning microscopy upon incorporation of reporter dyes during the self-assembly process. Using time correlated single photon counting and by analyzing the fluorescence decay curves, the nanoenvironment of the encapsulated fluorophores is unveiled. Using this approach, the hollow core structure of the polymersomes is confirmed. Finally, the encapsulation of different dyes added during the electroformation process is studied. The results underline the potential of this approach for obtaining microcapsules for subsequent triggered release of signaling fluorophores or antimicrobially active cargo molecules that can be used for bacterial infection diagnostics and/or treatment.


Assuntos
Plásticos Biodegradáveis/química , Portadores de Fármacos/química , Lactonas/química , Polietilenoglicóis/química , Microscopia Confocal
18.
Materials (Basel) ; 13(10)2020 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-32429161

RESUMO

The liquid metal lyophobicity of a rough substrate was, in previous articles, found to be rather independent on the surface wettability. In this article, we scrutinize the impact of surface wettability of a structured (rough) surface on the liquid metal wettability and adhesion. As a model system, a structured diamond coating was synthesized and modified by air plasma. We show that surface wettability (surface free energy) does not play a prominent role for static contact angle measurements and for the liquid metal repelling properties of the diamond coating in droplet impact experiments. In contrast, roll off angles and repeated deposition experiments illustrate that the increased hydrophilicity impacts the long-term liquid metal repellency of our coating. Liquid metal adhered after around 50 deposition/removal cycles on the hydrophilic diamond coating, while no liquid metal adhesion was visible after 100 cycles on the hydrophobic diamond coating, illustrating the fundamental role for the adhesion of liquid metal. The effect of repeated deposition in conjunction with gentle applied force was employed for coating the liquid metal lyophobic (hydrophilic) diamond coating with a thin liquid metal layer. The observed effect may find application in flexible electronics and thermal management systems as a means to improve interfacing of the liquid metal with conductive non-metal coatings.

19.
ACS Appl Mater Interfaces ; 12(21): 24432-24441, 2020 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-32342682

RESUMO

Biofouling is a worldwide problem from healthcare to marine exploration. Aggressive biofouling, wear, and corrosion lead to severe deterioration in function and durability. Here, micro- and nanostructured hierarchical diamond films mimicking the morphology of plant leaves were developed to simultaneously achieve superhydrophobicity, antibacterial efficacy, and marine antibiofouling, combined with mechanical and chemical robustness. These coatings were designed and successfully constructed on various commercial substrates, such as titanium alloys, silicon, and quartz glass via a chemical vapor deposition process. The unique surface structure of diamond films reduced bacteria attachment by 90-99%. In the marine environment, these biomimetic diamond films significantly reduced more than 95% adhesion of green algae. The structured diamond films retained mechanical robustness, superhydrophobicity, and antibacterial efficacy under high abrasion and corrosive conditions, exhibiting at least 20 times enhanced wear resistance than the bare commercial substrates even after long-term immersion in seawater.


Assuntos
Antibacterianos/farmacologia , Incrustação Biológica/prevenção & controle , Materiais Biomiméticos/farmacologia , Materiais Revestidos Biocompatíveis/farmacologia , Diamante/farmacologia , Antibacterianos/química , Materiais Biomiméticos/química , Adesão Celular/efeitos dos fármacos , Chlorella vulgaris/efeitos dos fármacos , Materiais Revestidos Biocompatíveis/química , Diamante/química , Escherichia coli/efeitos dos fármacos , Pseudomonas aeruginosa/efeitos dos fármacos , Molhabilidade
20.
Small ; 16(9): e1903841, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31573755

RESUMO

Motivated by the increasing demand of wearable and soft electronics, liquid metal (LM)-based microfluidics has been subjected to tremendous development in the past decade, especially in electronics, robotics, and related fields, due to the unique advantages of LMs that combines the conductivity and deformability all-in-one. LMs can be integrated as the core component into microfluidic systems in the form of either droplets/marbles or composites embedded by polymer materials with isotropic and anisotropic distribution. The LM microfluidic systems are found to have broad applications in deformable antennas, soft diodes, biomedical sensing chips, transient circuits, mechanically adaptive materials, etc. Herein, the recent progress in the development of LM-based microfluidics and their potential applications are summarized. The current challenges toward industrial applications and future research orientation of this field are also summarized and discussed.


Assuntos
Metais , Microfluídica , Eletrônica , Metais/química , Microfluídica/instrumentação , Microfluídica/métodos , Microfluídica/tendências , Monitorização Fisiológica/instrumentação , Monitorização Fisiológica/métodos , Robótica , Dispositivos Eletrônicos Vestíveis
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...