Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Bioelectron Med ; 9(1): 18, 2023 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-37553702

RESUMO

BACKGROUND: Peripheral nerve stimulation is used in both clinical and fundamental research for therapy and exploration. At present, non-invasive peripheral nerve stimulation still lacks the penetration depth to reach deep nerve targets and the stimulation focality to offer selectivity. It is therefore rarely employed as the primary selected nerve stimulation method. We have previously demonstrated that a new stimulation technique, temporal interference stimulation, can overcome depth and focality issues. METHODS: Here, we implement a novel form of temporal interference, bilateral temporal interference stimulation, for bilateral hypoglossal nerve stimulation in rodents and humans. Pairs of electrodes are placed alongside both hypoglossal nerves to stimulate them synchronously and thus decrease the stimulation amplitude required to activate hypoglossal-nerve-controlled tongue movement. RESULTS: Comparing bilateral temporal interference stimulation with unilateral temporal interference stimulation, we show that it can elicit the same behavioral and electrophysiological responses at a reduced stimulation amplitude. Traditional transcutaneous stimulation evokes no response with equivalent amplitudes of stimulation. CONCLUSIONS: During first-in-man studies, temporal interference stimulation was found to be well-tolerated, and to clinically reduce apnea-hypopnea events in a subgroup of female patients with obstructive sleep apnea. These results suggest a high clinical potential for the use of temporal interference in the treatment of obstructive sleep apnea and other diseases as a safe, effective, and patient-friendly approach. TRIAL REGISTRATION: The protocol was conducted with the agreement of the International Conference on Harmonisation Good Clinical Practice (ICH GCP), applicable United States Code of Federal Regulations (CFR) and followed the approved BRANY IRB File # 22-02-636-1279.

2.
Front Immunol ; 13: 997482, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36172388

RESUMO

T-cell lymphomas are aggressive lymphomas that often resist current therapy options or present with relapsed disease, making the development of more effective treatment regimens clinically important. Previously, we have shown that CD4 CAR can effectively target T-cell malignancies in preclinical studies. As IL-15 has been shown to strengthen the anti-tumor response, we have modified CD4 CAR to secrete an IL-15/IL-15sushi complex. These CD4-IL15/IL15sushi CAR T cells and NK92 cells efficiently eliminated CD4+ leukemic cell lines in co-culture assays. Additionally, CD4-IL15/IL15sushi CAR out-performed CD4 CAR in in vivo models, demonstrating a benefit to IL-15/IL-15sushi inclusion. In a Phase I clinical trial, CD4-IL15/IL15sushi CAR T cells were tested for safety in three patients with different T-cell lymphomas. Infusion of CD4-IL15/IL15sushi CAR T cells was well-tolerated by the patients without significant adverse effects and led to the remission of their lymphomas. Additionally, infusion led to the depletion of CD4+ Treg cells and expansion of CD3+CD8+ T cells and NK cells. These results suggest that CD4-IL15/IL15sushi CAR T cells may be a safe and effective treatment for patients with relapsed or refractory T-cell lymphomas, where new treatment options are needed.


Assuntos
Leucemia , Linfoma de Células T , Ensaios Clínicos Fase I como Assunto , Humanos , Imunoterapia Adotiva/métodos , Interleucina-15 , Células Matadoras Naturais
3.
Stem Cell Rev Rep ; 17(2): 652-661, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33410096

RESUMO

While treatment for B-cell malignancies has been revolutionized through the advent of CAR immunotherapy, similar strategies for T-cell malignancies have been limited. Additionally, T-cell leukemias and lymphomas can commonly metastasize to the CNS, where outcomes are poor and treatment options are associated with severe side effects. Consequently, the development of safer and more effective alternatives for targeting malignant T cells that have invaded the CNS remains clinically important. CD5 CAR has previously been shown to effectively target various T-cell cancers in preclinical studies. As IL-15 strengthens the anti-tumor response, we have modified CD5 CAR to secrete an IL-15/IL-15sushi complex. In a Phase I clinical trial, these CD5-IL15/IL15sushi CAR T cells were tested for safety and efficacy in a patient with refractory T-LBL with CNS infiltration. CD5-IL15/IL15sushi CAR T cells were able to rapidly ablate the CNS lymphoblasts within a few weeks, resulting in the remission of the patient's lymphoma. Despite the presence of CD5 on normal T cells, the patient only experienced a brief, transient T-cell aplasia. These results suggest that CD5-IL15/IL15sushi CAR T cells may be a safe and useful treatment of T-cell malignancies and may be particularly beneficial for patients with CNS involvement.Graphical Abstract.


Assuntos
Imunoterapia Adotiva , Interleucina-15 , Leucemia-Linfoma Linfoblástico de Células Precursoras , Linfócitos T , Humanos , Leucemia-Linfoma Linfoblástico de Células Precursoras/terapia
5.
Front Immunol ; 9: 2648, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30538698

RESUMO

Macrophage cytokine production is regulated by neural signals, for example in the inflammatory reflex. Signals in the vagus and splenic nerves are relayed by choline acetyltransferase+ T cells that release acetylcholine, the cognate ligand for alpha7 nicotinic acetylcholine subunit-containing receptors (α7nAChR), and suppress TNF release in macrophages. Here, we observed that electrical vagus nerve stimulation with a duration of 0.1-60 s significantly reduced systemic TNF release in experimental endotoxemia. This suppression of TNF was sustained for more than 24 h, but abolished in mice deficient in the α7nAChR subunit. Exposure of primary human macrophages and murine RAW 264.7 macrophage-like cells to selective ligands for α7nAChR for 1 h in vitro attenuated TNF production for up to 24 h in response to endotoxin. Pharmacological inhibition of adenylyl cyclase (AC) and knockdown of adenylyl cyclase 6 (AC6) or c-FOS abolished cholinergic suppression of endotoxin-induced TNF release. These findings indicate that action potentials in the inflammatory reflex trigger a change in macrophage behavior that requires AC and phosphorylation of the cAMP response element binding protein (CREB). These observations further our mechanistic understanding of neural regulation of inflammation and may have implications for development of bioelectronic medicine treatment of inflammatory diseases.


Assuntos
Adenilil Ciclases/metabolismo , Inflamação/metabolismo , Reflexo/fisiologia , Fatores de Necrose Tumoral/metabolismo , Animais , Proteína de Ligação a CREB/metabolismo , Linhagem Celular , Endotoxinas/metabolismo , Macrófagos/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Células RAW 264.7 , Ratos , Ratos Sprague-Dawley , Baço/metabolismo , Nervo Vago/metabolismo , Receptor Nicotínico de Acetilcolina alfa7/metabolismo
6.
Nat Biotechnol ; 34(10): 1066-1071, 2016 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-27617738

RESUMO

Blood pressure regulation is known to be maintained by a neuro-endocrine circuit, but whether immune cells contribute to blood pressure homeostasis has not been determined. We previously showed that CD4+ T lymphocytes that express choline acetyltransferase (ChAT), which catalyzes the synthesis of the vasorelaxant acetylcholine, relay neural signals. Here we show that these CD4+CD44hiCD62Llo T helper cells by gene expression are a distinct T-cell population defined by ChAT (CD4 TChAT). Mice lacking ChAT expression in CD4+ cells have elevated arterial blood pressure, compared to littermate controls. Jurkat T cells overexpressing ChAT (JTChAT) decreased blood pressure when infused into mice. Co-incubation of JTChAT and endothelial cells increased endothelial cell levels of phosphorylated endothelial nitric oxide synthase, and of nitrates and nitrites in conditioned media, indicating increased release of the potent vasorelaxant nitric oxide. The isolation and characterization of CD4 TChAT cells will enable analysis of the role of these cells in hypotension and hypertension, and may suggest novel therapeutic strategies by targeting cell-mediated vasorelaxation.


Assuntos
Pressão Sanguínea/fisiologia , Linfócitos T CD4-Positivos/fisiologia , Colina O-Acetiltransferase/metabolismo , Hemostasia/fisiologia , Animais , Células Cultivadas , Retroalimentação Fisiológica/fisiologia , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL
7.
Mol Med ; 22: 585-596, 2016 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-27341452

RESUMO

Type 1 diabetes mellitus (T1D) is a chronic autoimmune disease characterized by beta cell destruction, insulin deficiency and hyperglycemia. Activated macrophages and autoimmune T cells play a crucial role in the pathogenesis of hyperglycemia in NOD murine diabetes models, but the molecular mechanisms of macrophage activation are unknown. We recently identified pigment epithelium-derived factor (PEDF) as an adipocyte-derived factor that activates macrophages and mediates insulin resistance. Reasoning that PEDF might participate as a proinflammatory mediator in murine diabetes, we measured PEDF levels in NOD mice. PEDF levels are significantly elevated in pancreas, in correlation with pancreatic TNF levels in NOD mice. To identify experimental therapeutics, we screened 2,327 compounds in two chemical libraries (the NIH Clinical Collection and Pharmakon-1600a) for leads that inhibit PEDF mediated TNF release in macrophage cultures. The lead molecule selected, "emetine" is a widely used emetic. It inhibited PEDF-mediated macrophage activation with an EC50 or 146 nM. Administration of emetine to NOD mice and to C57Bl6 mice subjected to streptozotocin significantly attenuated hyperglycemia, reduced TNF levels in pancreas, and attenuated insulitis. Together, these results suggest that targeting PEDF with emetine may attenuate TNF release and hyperglycemia in murine diabetes models. This suggests that further investigation of PEDF and emetine in the pathogenesis of human diabetes is warranted.

8.
Bioelectron Med ; 3: 18-28, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-33145374

RESUMO

When pathogens and toxins breech the epithelial barrier, antigens are transported by the lymphatic system to lymph nodes. In previously immunized animals, antigens become trapped in the draining lymph nodes, but the underlying mechanism that controls antigen restriction is poorly understood. Here we describe the role of neurons in sensing and restricting antigen flow in lymph nodes. The antigen keyhole-limpet hemocyanin (KLH) injected into the mouse hind paw flows from the popliteal lymph node to the sciatic lymph node, continuing through the upper lymphatics to reach the systemic circulation. Re-exposure to KLH in previously immunized mice leads to decreased flow from the popliteal to the sciatic lymph node as compared with naïve mice. Administering bupivacaine into the lymph node region restores antigen flow in immunized animals. In contrast, neural activation using magnetic stimulation significantly decreases antigen trafficking in naïve animals as compared with sham controls. Ablating NaV1.8 + sensory neurons significantly reduces antigen restriction in immunized mice. Genetic deletion of FcγRI/FcεRI also reverses the antigen restriction. Colocalization of PGP9.5-expressing neurons, FcγRI receptors and labeled antigen occurs at the antigen challenge site. Together, these studies reveal that neuronal circuits modulate antigen trafficking through a pathway that requires NaV1.8 and FcγR.

9.
Mol Med ; 21(1): 702-708, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26322849

RESUMO

Type 1 diabetes in mice is characterized by autoimmune destruction of insulin-producing pancreatic ß-cells. Disease pathogenesis involves invasion of pancreatic islets by immune cells, including macrophages and T cells, and production of antibodies to self-antigens, including insulin. Activation of the inflammatory reflex, the neural circuit that inhibits inflammation, culminates on cholinergic receptor signals on immune cells to attenuate cytokine release and inhibit B-cell antibody production. Here, we show that galantamine, a centrally acting acetylcholinesterase inhibitor and an activator of the inflammatory reflex, attenuates murine experimental type 1 diabetes. Administration of galantamine to animals immunized with keyhole limpet hemocyanin (KLH) significantly suppressed splenocyte release of immunoglobulin G (IgG) and interleukin (IL)-4 and IL-6 during KLH challenge ex vivo. Administration of galantamine beginning at 1 month of age in nonobese diabetic (NOD) mice significantly delayed the onset of hyperglycemia, attenuated immune cell infiltration in pancreatic islets and decreased anti-insulin antibodies in serum. These observations indicate that galantamine attenuates experimental type 1 diabetes in mice and suggest that activation of the inflammatory reflex should be further studied as a potential therapeutic approach.

10.
J Trauma ; 57(2): 262-69; discussion 269-70, 2004 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-15345971

RESUMO

UNLABELLED: Resuscitation with racemic lactated Ringer's solution (containing equal amounts of D and L isomers of lactate) has been shown to induce pulmonary apoptosis. Substitution of DL-isomer lactate with ketone bodies (beta-hydroxybutyrate, BHB), sodium pyruvate, or L-isomer of lactate decrease this injury without changing the energy status of the tissues or the expression of apoptotic genes. These modified solutions however alter the function of apoptotic proteins through an unknown mechanism. We postulated that DL-LR induces apoptosis by restricting the phosphorylation of key apoptotic proteins. METHODS: Male Sprague Dawley rats (n = 30, 5/group) were subjected to a three stage, volume-controlled hemorrhage and randomized to the following groups. 1) No hemorrhage (Sham); 2) Hemorrhage and no resuscitation (NR); 3) Resuscitation with 3x shed blood volume of racemic LR (DL-LR); 4) Resuscitation with 3x shed blood volume of LR containing only the L-isomer of lactate (L-LR); 5) Resuscitation with 3s shed blood volume of pyruvate Ringer's (PR); 6) Resuscitation with 3s shed blood volume of ketone Ringer's (KR). The modified Ringer's solutions were identical to racemic LR except for equimolar substitution of DL-lactate for L-lactate, pyruvate and BHB respectively. Lung tissue was obtained 2 hours later and subjected to Western Blotting. The levels of Akt, Bad, and eNOS (total and phosphorylated) proteins were measured. Finally, the expression of gene coding for protein 14-3-3 was measured using RT-PCR. RESULTS: Resuscitation with DL-LR caused a significant (p < 0.05) increase in the total Bad and a decrease in phosphorylated Bad protein expression in the lung. It also caused an increase in the phosphorylated Akt levels and a decrease in gene coding for protein 14-3-3. These changes were consistent with signaling imbalances that favor apoptosis. Modified LR solutions, on the other hand, did not cause these alterations. Phosphorylation pattern of eNOS supported the involvement of PI3K/Akt pathway in this process. CONCLUSION: Racemic lactate plays a role in the induction of pulmonary apoptosis by restricting phosphorylation of Bad and eNOS proteins.


Assuntos
Apoptose/efeitos dos fármacos , Proteínas de Transporte/efeitos dos fármacos , Modelos Animais de Doenças , Soluções Isotônicas/uso terapêutico , Pulmão , Óxido Nítrico Sintase/efeitos dos fármacos , Choque Hemorrágico , Proteínas 14-3-3 , Animais , Apoptose/genética , Western Blotting , Proteínas de Transporte/metabolismo , Química Farmacêutica , Avaliação Pré-Clínica de Medicamentos , Expressão Gênica/efeitos dos fármacos , Expressão Gênica/genética , Infusões Intravenosas , Soluções Isotônicas/química , Soluções Isotônicas/metabolismo , Soluções Isotônicas/farmacologia , Pulmão/química , Pulmão/efeitos dos fármacos , Pulmão/metabolismo , Masculino , Óxido Nítrico Sintase/metabolismo , Óxido Nítrico Sintase Tipo III , Fosforilação , Proteínas Serina-Treonina Quinases/efeitos dos fármacos , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Proto-Oncogênicas/efeitos dos fármacos , Proteínas Proto-Oncogênicas/metabolismo , Proteínas Proto-Oncogênicas c-akt , Distribuição Aleatória , Ratos , Ratos Sprague-Dawley , Ressuscitação/métodos , Lactato de Ringer , Solução de Ringer , Choque Hemorrágico/tratamento farmacológico , Choque Hemorrágico/metabolismo , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/genética , Tirosina 3-Mono-Oxigenase/efeitos dos fármacos , Tirosina 3-Mono-Oxigenase/genética , Proteína de Morte Celular Associada a bcl
11.
Surgery ; 134(2): 267-74, 2003 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-12947328

RESUMO

BACKGROUND: Resuscitation fluids containing beta-hydroxybutyrate (BHB) have been shown to decrease cellular injury after hemorrhagic shock and resuscitation through an unknown mechanism. We tested whether this effect was related to BHB-induced metabolic modulations. METHODS: Male Sprague Dawley rats (n=30) were subjected to volume-controlled hemorrhage (27 mL/kg during 10 minutes followed by 75 minutes of shock during which another 8 mL/kg of blood was withdrawn). Experimental groups included the following: (1) sham, (2) no resuscitation (NR), (3) racemic lactated Ringer's (DL-LR) solution, (4) LR containing L-isomer only (L-LR), (5) ketone Ringer's solution with lactate substituted by BHB (KR), and (6) pyruvate Ringer's solution with lactate substituted by pyruvate (PR). The resuscitation fluids were infused during 45 minutes simultaneously with additional hemorrhage of 8 mL/kg. Hemodynamic and physiologic parameters and the plasma levels of BHB were serially measured. The animals were killed 2 hours after resuscitation, and tissues were frozen instantaneously for cellular adenylate extraction and adenosine triphosphate (ATP) and adenosine diphosphate analysis. Pulmonary apoptosis was studied using Western blotting, immunohistochemistry, and reverse transcriptase-polymerase chain reaction. Expression of enzymes involved in ketogenesis and ketolysis was analyzed by reverse transcriptase-polymerase chain reaction. RESULTS: NR and resuscitation with DL-LR increased the expression of apoptotic markers, whereas resuscitation with KR and PR significantly decreased the expression of apoptotic markers in rat lungs. Resuscitation with KR was followed by a profound increase in plasma BHB levels; however, the expression levels of ketolytic enzymes were essentially unaffected. KR infusion did not induce significant improvements in tissue ATP levels. CONCLUSIONS: Resuscitation with KR and PR protects against pulmonary apoptosis without improving tissue ATP content. Therefore, metabolic modulation is unlikely to be the major mechanism by which BHB exerts its protective effects during reperfusion.


Assuntos
Apoptose/efeitos dos fármacos , Soluções Isotônicas/farmacologia , Pulmão/fisiopatologia , Ressuscitação , Choque Hemorrágico/fisiopatologia , Choque Hemorrágico/terapia , Ácido 3-Hidroxibutírico/administração & dosagem , Ácido 3-Hidroxibutírico/sangue , Trifosfato de Adenosina/metabolismo , Animais , Metabolismo Energético/efeitos dos fármacos , Soluções Isotônicas/química , Pulmão/metabolismo , Masculino , Ácido Pirúvico , Ratos , Ratos Sprague-Dawley , Lactato de Ringer , Índice de Gravidade de Doença , Choque Hemorrágico/sangue
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...