Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cell Death Differ ; 14(5): 963-72, 2007 May.
Artigo em Inglês | MEDLINE | ID: mdl-17304244

RESUMO

Removal of apoptotic cells is a dynamic process coordinated by ligands on apoptotic cells, and receptors and other signaling proteins on the phagocyte. One of the fundamental challenges is to understand how different phagocyte proteins form specific and functional complexes to orchestrate the recognition/removal of apoptotic cells. One evolutionarily conserved pathway involves the proteins cell death abnormal (CED)-2/chicken tumor virus no. 10 (CT10) regulator of kinase (Crk)II, CED-5/180 kDa protein downstream of chicken tumor virus no. 10 (Crk) (Dock180), CED-12/engulfment and migration (ELMO) and MIG-2/RhoG, leading to activation of the small GTPase CED-10/Rac and cytoskeletal remodeling to promote corpse uptake. Although the role of ELMO : Dock180 in regulating Rac activation has been well defined, the function of CED-2/CrkII in this complex is less well understood. Here, using functional studies in cell lines, we observe that a direct interaction between CrkII and Dock180 is not required for efficient removal of apoptotic cells. Similarly, mutants of CED-5 lacking the CED-2 interaction motifs could rescue engulfment and migration defects in CED-5 deficient worms. Mutants of CrkII and Dock180 that could not biochemically interact could colocalize in membrane ruffles. Finally, we identify MIG-2/RhoG (which functions upstream of Dock180 : ELMO) as a possible point of crosstalk between these two signaling modules. Taken together, these data suggest that Dock180/ELMO and CrkII act as two evolutionarily conserved signaling submodules that coordinately regulate engulfment.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Apoptose , Caenorhabditis elegans/citologia , Fagocitose , Proteínas Proto-Oncogênicas c-crk/metabolismo , Transdução de Sinais , Proteínas rac de Ligação ao GTP/metabolismo , Animais , Sítios de Ligação , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/metabolismo , Movimento Celular , Galinhas/virologia , Células HeLa , Humanos , Proteínas de Membrana/metabolismo , Camundongos , Células NIH 3T3 , Ligação Proteica , Estrutura Terciária de Proteína , Transporte Proteico , Proteínas rho de Ligação ao GTP/metabolismo
2.
Cell ; 107(1): 27-41, 2001 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-11595183

RESUMO

The C. elegans genes ced-2, ced-5, and ced-10, and their mammalian homologs crkII, dock180, and rac1, mediate cytoskeletal rearrangements during phagocytosis of apoptotic cells and cell motility. Here, we describe an additional member of this signaling pathway, ced-12, and its mammalian homologs, elmo1 and elmo2. In C. elegans, CED-12 is required for engulfment of dying cells and for cell migrations. In mammalian cells, ELMO1 functionally cooperates with CrkII and Dock180 to promote phagocytosis and cell shape changes. CED-12/ELMO-1 binds directly to CED-5/Dock180; this evolutionarily conserved complex stimulates a Rac-GEF, leading to Rac1 activation and cytoskeletal rearrangements. These studies identify CED-12/ELMO as an upstream regulator of Rac1 that affects engulfment and cell migration from C. elegans to mammals.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal , Proteínas de Caenorhabditis elegans , Caenorhabditis elegans/fisiologia , Proteínas de Transporte/metabolismo , Movimento Celular/fisiologia , Proteínas do Citoesqueleto , Proteínas de Helminto/metabolismo , Fagocitose/fisiologia , Proteínas Proto-Oncogênicas , Proteínas rac de Ligação ao GTP/metabolismo , Sequência de Aminoácidos , Animais , Animais Geneticamente Modificados , Proteínas Reguladoras de Apoptose , Caenorhabditis elegans/citologia , Caenorhabditis elegans/genética , Proteínas de Transporte/química , Proteínas de Transporte/genética , Linhagem Celular , Extensões da Superfície Celular/metabolismo , Citoesqueleto/metabolismo , Citometria de Fluxo , Genes de Helmintos , Genes Reporter , Gônadas/crescimento & desenvolvimento , Proteínas de Helminto/genética , Humanos , Masculino , Camundongos , Microscopia de Fluorescência , Dados de Sequência Molecular , Proteínas Quinases/metabolismo , Proteínas/metabolismo , Proteínas Proto-Oncogênicas c-crk , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Alinhamento de Sequência , Transdução de Sinais/fisiologia , Distribuição Tecidual
3.
Kidney Int ; 54(4): 1175-87, 1998 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-9767533

RESUMO

BACKGROUND: Mesangial cells during embryonic development and glomerular disease express smooth muscle alpha-actin (alpha-SMA). We were therefore surprised when cultured mesangial cells deprived of serum markedly increased expression of alpha-SMA. Serum-deprived mesangial cells appeared larger than serum-fed mesangial cells. We hypothesized that alpha-SMA expression may be more reflective of mesangial cell hypertrophy than hyperplasia. METHODS: Human mesangial cells were cultured in medium alone or with fetal bovine serum, thrombin, platelet-derived growth factor-BB (PDGF-BB) and/or transforming growth factor-beta1 (TGF-beta1). Alpha-SMA expression was examined by immunofluorescence, Western blot, and Northern blot analysis. Cell size was analyzed by forward light scatter flow cytometry. RESULTS: Alpha-SMA mRNA was at least tenfold more abundant after three to five days in human mesangial cells plated without serum, but beta-actin mRNA was unchanged. Serum-deprived cells contained 5.3-fold more alpha-SMA after three days and 56-fold more after five days by Western blot. Serum deprivation also increased alpha-SMA in rat and mouse mesangial cells. The effects of serum deprivation on alpha-SMA expression were reversible. Mesangial cell mitogens, thrombin or PDGF-BB, decreased alpha-SMA, but TGF-beta1 increased alpha-SMA expression and slowed mesangial cell proliferation in serum-plus medium. Flow cytometry showed that serum deprivation or TGF-beta1 treatment caused mesangial cell hypertrophy. PDGF-BB, thrombin, or thrombin receptor-activating peptide blocked hypertrophy in response to serum deprivation. CONCLUSIONS: We conclude that increased alpha-SMA expression in mesangial cells reflects cellular hypertrophy rather than hyperplasia.


Assuntos
Actinas/genética , Actinas/metabolismo , Mesângio Glomerular/metabolismo , Mesângio Glomerular/patologia , Animais , Becaplermina , Bovinos , Tamanho Celular/efeitos dos fármacos , Células Cultivadas , Meios de Cultura Livres de Soro , Regulação da Expressão Gênica/efeitos dos fármacos , Mesângio Glomerular/efeitos dos fármacos , Humanos , Hipertrofia , Camundongos , Fator de Crescimento Derivado de Plaquetas/farmacologia , Proteínas Proto-Oncogênicas c-sis , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Ratos , Trombina/farmacologia , Fator de Crescimento Transformador beta/farmacologia
4.
J Am Soc Nephrol ; 7(10): 2230-43, 1996 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-8915984

RESUMO

Smooth muscle cell and mesangial cell hillock formation have been proposed as in vitro models of vascular sclerosis and glomerular sclerosis. This growth pattern is characterized by multilayered ridges and nodules, termed hills or hillocks, separated by less populated areas termed valleys. In this study, it was discovered that an extracellular matrix rich in pericellular fibronectin-fibrils was key to hillock formation. Human mesangial cells were plated onto serum-coated or noncoated substrata in serum-free medium. Subconfluent cells on serum-coated substrata migrated together, forming aggregates, but cells on noncoated substrata remained evenly dispersed. When plated at confluent densities, cells in serum-coated dishes formed hillocks, but cells in noncoated dishes did not. In serum-coated dishes, the substratum underlying subconfluent cells was vitronectin-rich but fibronectin-poor, whereas the pericellular matrix contained abundant fibronectin fibrils. In contrast, the substratum of subconfluent cells plated in noncoated dishes lacked vitronectin but was fibronectin-rich, whereas the pericellular matrix contained few fibronectin fibrils. The distributions of integrin receptors for fibronectin (rabbit anti-alpha 5 beta 1) and vitronectin (rabbit anti-alpha V, beta 3, and beta 5) followed the distributions of their ligands, fibronectin and vitronectin, respectively. Antibodies to fibronectin blocked hillock formation by cells on serum-coated substrata and prevented spreading of cells on noncoated substrata. In summary, key steps in hillock formation are: (1) migration, (2) secretion of fibronectin and assembly of pericellular fibrils, (3) fibronectin fibril-mediated cell-cell adhesion, and (4) aggregation of cells with further migration to form multiple layers. A similar mechanism may play a role in vascular and glomerular sclerosis.


Assuntos
Agregação Celular , Matriz Extracelular/metabolismo , Mesângio Glomerular/citologia , Mesângio Glomerular/metabolismo , Adesão Celular/efeitos dos fármacos , Ciclo Celular , Movimento Celular , Células Cultivadas , Meios de Cultura Livres de Soro , Fibronectinas/farmacologia , Mesângio Glomerular/fisiologia , Humanos , Integrinas/metabolismo , Distribuição Tecidual , Vitronectina/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...